Math, asked by manjupulapa82, 1 month ago

the set of points Where the function f geven by f(x) =|x-3| cosn is different able is​

Answers

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:f(x) =  |x - 3|

Let us first define the function f(x)

We know

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\: |x|  = \begin{cases} &\sf{ - x, \: when \: x < 0} \\ &\sf{ \:  \:  \: x, \: when \: x \geqslant 0} \end{cases}\end{gathered}\end{gathered}

So,

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\:f(x) =  |x - 3|  = \begin{cases} &\sf{ - (x - 3), \: when \: x < 3} \\ &\sf{ \:  \:  \: x - 3, \: when \: x \geqslant 3} \end{cases}\end{gathered}\end{gathered}

So, we have to check differentiability of f(x) at x = 3.

We know,

A function f(x) is said to be differentiable at x = a iff

\boxed{ \rm{ \displaystyle\lim_{x \to a^-} \dfrac{f(x) - f(a)}{x - a} = \displaystyle\lim_{x \to a^ + } \dfrac{f(x) - f(a)}{x - a}}}

Consider, Left Hand Derivative at x = 3

\rm :\longmapsto\:\displaystyle\lim_{x \to 3^-} \dfrac{f(x) - f(3)}{x - 3}

\rm \:  =  \:  \: \displaystyle\lim_{x \to 3^-} \dfrac{ - (x - 3) -0}{x - 3}

\rm \:  =  \:  \: \displaystyle\lim_{x \to 3^-} \dfrac{ - (x - 3)}{x - 3}

\rm \:  =  \:  \: \displaystyle\lim_{x \to 3^-} ( - 1)

\rm \:  =  \:  \:  - 1

\rm :\longmapsto\:\displaystyle\lim_{x \to 3^-} \dfrac{f(x) - f(3)}{x - 3} =  - 1

Now, Consider Right Hand Derivative at x = 3

\rm :\longmapsto\:\displaystyle\lim_{x \to 3^ + } \dfrac{f(x) - f(3)}{x - 3}

\rm \:  =  \:  \: \displaystyle\lim_{x \to 3^ + } \dfrac{ (x - 3) -0}{x - 3}

\rm \:  =  \:  \: \displaystyle\lim_{x \to 3^ + } \dfrac{ (x - 3)}{x - 3}

\rm \:  =  \:  \: \displaystyle\lim_{x \to 3^ + } 1

\rm \:  =  \:  \: 1

\rm :\longmapsto\:\displaystyle\lim_{x \to 3^ + } \dfrac{f(x) - f(3)}{x - 3} =   1

Thus, we concluded that

\rm :\longmapsto\:\displaystyle\lim_{x \to 3^-} \dfrac{f(x) - f(3)}{x - 3}  \ne \displaystyle\lim_{x \to 3^ + } \dfrac{f(x) - f(3)}{x - 3}

\bf\implies \:f(x) \: is \: not \: differentiable \: at \: x = 3

\bf\implies \:f(x) \: is \: differentiable \:  \forall \: x \in \: R -  \{3 \}

Similar questions