the sets of all values of 'x' satisfying 16power 1/x ÷ 2power x+3
Answers
Answered by
0
Step-by-step explanation:
1−f(x)−f(x)
2
>f(1−5x)
Or
f(f(x))>f(1−5x) ...(i)
Now
f
′
(x)=−1−3x
2
Hence
f
′
(x)<0 for all x. ...(ii)
Hence
f(f(x)>f(1−5x)
But f(x) is a decreasing function (from ii).
Hence
f(x)<1−5x
Or
1−x−x
3
<1−5x.
Or
4x−x
3
<0
Or
x
3
−4x>0
Or
x(x
2
−4)>0
Or
x>0 and x
2
−4>0 or
x<0 and x
2
−4<0
Hence if x>0 x
2
−4>0 implies xϵ(2,∞)
And
x<0 and x
2
−4<0 implies (−2,0)
Hence
xϵ(−2,0)∪(2,∞).
Similar questions