Math, asked by akibreyan, 3 days ago

The seventh term of an arithmetic series is 6 and the eighteenth term is 22.5 Calculate (a) The common difference of the series. (b) The first term of the series. Given also that the sum of the first n terms of the series is 252, (c) Find the value of n. ​

Answers

Answered by senthiljanaki31
0

Step-by-step explanation:

A) a7=6

a18=22.5

a+6d=6

a+17d=22.5

subract eq 1 and 2

will get d=1.5

Answered by Anonymous
54

STEP-BY-STEP EXPLANATION:

.

:\implies \bf {a}_{n} = a + (n - 1)d \\

:\implies\tt {a}_{7} = 6 \:  \:  \: ...(given) \\

:\implies\tt {a}_{7} = a + (7 - 1)d \\

:\implies\tt 6= a + 6d \:  \:  \: ...(1) \\  \\

:\implies\tt {a}_{18} = 22.5 \:  \:  \: ...(given) \\

:\implies\tt {a}_{18} = a + (18 - 1)d \\

:\implies\tt 22.5 = a + 17d \:  \:  \: ...(2) \\  \\

 \bf Substract  \: Eq[1]  \: from \:  Eq[2], \\

:\implies\tt 22.5 - 6 = (a + 17d) - (a + 6d) \\

:\implies\tt 16.5 = a  +17d - a - 6d \\

:\implies\tt 16.5 = 11d \\

:\implies\bf d = 1.5 \\  \\

 \bf Substituting \:  this  \: value  \: of  \: d  \: in \:  Eq [1], \\

:\implies\tt 6= a + 6d \:  \:  \: ...(1) \\

:\implies\tt 6 = a + 6(1.5) \\

:\implies\tt 6 = a + 9 \\

:\implies\bf a =  - 3 \\  \\

:\implies\bf {S}_{n} =  \frac{n}{2} [2a + (n - 1)d] \\  \\

:\implies\tt 252 =  \frac{n}{2} (2( - 3) + (n - 1)(1.5)) \\

:\implies\tt 252 =  \frac{n}{2} ( - 6 +  \frac{3}{2} n - 1.5) \\

:\implies\tt 252 =  \frac{n}{2} ( - 7.5 +  \frac{3}{2} n) \\

:\implies\tt 252 =  \frac{ - 7.5  }{2} n +  \frac{3}{4}  {n}^{2}  \\

:\implies\tt252  =  \frac{3}{4}  {n}^{2}  -  \frac{15}{4} n \\

:\implies\tt 1008 = 3 {n}^{2}  - 15n \\

:\implies\tt 1008 = 3( {n}^{2}  - 5n) \\

:\implies\tt 336 =  {n}^{2}  -5n \\

:\implies\tt  {n}^{2}  = 336 + 5n \\

:\implies\tt n =  \sqrt{336 + 5n}  \\

 \bf By \:  Hit \:  and  \: Trial  \:  Method  \: We \:  Find, \\

:\implies\bf n = 21 \\  \\

REQUIRED ANSWER,

.

  • The common difference of the series is 1.5.
  • The first term is -3.
  • The value of n is 21.
Similar questions