Math, asked by Anonymous, 4 months ago

The shadow of a man 5 ft long is 7 ft. At the same time the shadow of a tree
is 28 ft , then the height of tree .

Answers

Answered by chauhanyash282004
2

Answer:

20 m is the height of the tree

Answered by REDPLANET
9

\underline{\boxed{\bold{Question}}}  

 \; \; \;

✧ The shadow of a man 5 ft long is 7 ft. At the same time the shadow of a tree  is 28 ft , then the height of tree .

  \; \; \;

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

 \; \; \;  

\underline{\boxed{\bold{Important\;Information}}}  

 \; \; \;

❏ We usually use concept of similar triangles to solve this type of figure.

 \; \; \;

❏ Then once triangle are similar we use to equate ratio of sides and get our answer !

 \; \; \;

❏ Refer Attachment for figure .-.

  \; \; \;

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

  \; \; \;

\underline{\boxed{\bold{Given}}}

 \; \; \;

❏ Shadow of man = 7 ft.

❏ Shadow of tree = 28 ft.

❏ Height of man = 5 ft.

❏ Height of tree = ? ft.

 \; \; \;

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

  \; \; \;

\underline{\boxed{\bold{Answer}}}

 \; \; \;

Let's Start !

  \; \; \;

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

  \; \; \;

First of all let's make ΔABC ∼ ΔADE

  \; \; \;

\bold{ \red{ In \; \triangle ABC \; and \; \triangle ADE }}

\bold{ \blue{ \implies \angle A = \angle A  \ \ \ \  (Common\; angle) }}

\bold{ \orange{ \implies \angle ABC = \angle ADE = 90^{\circ}  }}

\boxed {\bold{  \therefore \; \triangle ABC \; \sim \; \triangle ADE }}

 \; \; \;

Now by CPCT ;

 \; \; \;

\bold{ \red { :\leadsto \; \frac{AB}{AD} = \frac{BC}{DE} } }

\bold{ \green { :\leadsto \; \frac{7 \;ft.}{28 \; ft.} = \frac{5 \; ft.}{x} } }

\bold{ \purple { :\leadsto \; x = (5 \times 4) \;ft.  } }

\boxed{ \bold{ \red { :\leadsto \; x = 20 \;ft } } }

 \; \; \;

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\boxed{\boxed{\bold{\therefore Height \; of \; Tree = 20 \; ft.}}}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

 \; \; \;

Hope this helps u.../

【Brainly Advisor】

Attachments:
Similar questions