the Shadow of a tower ,when the angle of elevation of the sun is 45°, is found to be 10m longer than when it is 60°. find the height of tower.
aryan014:
is this answer perfectly correct?
Answers
Answered by
410
Let AB be the tower with height h.
Let AC and AD be the shadows when elevation of sun are 60 degrees and 45 degrees.
As per given, CD=10m
let us assume CA=x
In triangle ACB,
tan60°=opposite side /adjacent side
√3=h/AC
√3=h/x
x=h/√3 ------ equation (1)
In traingleDAB,
tan45°=AB/AD
=h/(AC+DC)
1=h/(x+10)
x+10=h-----equation(2)
By substituting the value of x in equation 2 we get:
h/√3+10=h
h-h/√3=10
h√3-h=10√3
h(√3-1)=10√3
h=10√3/√3-1
Rationalizing factor is √3+1
h=10√3(√3+1)/[(√3-1)x(√3+1)]
h=10√3(√3+1)/(3-1)
h=10√3(√3+1)/2
h=5√3(√3+1) m
h=5(3+√3)
=15+5*√3
=15+5*1.732
=15+8.660
=23.66 m
∴ Height of tower is 23.66m
Let AC and AD be the shadows when elevation of sun are 60 degrees and 45 degrees.
As per given, CD=10m
let us assume CA=x
In triangle ACB,
tan60°=opposite side /adjacent side
√3=h/AC
√3=h/x
x=h/√3 ------ equation (1)
In traingleDAB,
tan45°=AB/AD
=h/(AC+DC)
1=h/(x+10)
x+10=h-----equation(2)
By substituting the value of x in equation 2 we get:
h/√3+10=h
h-h/√3=10
h√3-h=10√3
h(√3-1)=10√3
h=10√3/√3-1
Rationalizing factor is √3+1
h=10√3(√3+1)/[(√3-1)x(√3+1)]
h=10√3(√3+1)/(3-1)
h=10√3(√3+1)/2
h=5√3(√3+1) m
h=5(3+√3)
=15+5*√3
=15+5*1.732
=15+8.660
=23.66 m
∴ Height of tower is 23.66m
Attachments:
Answered by
125
Answer:
Let length of shadow when it is 60 be x
Then x+10=shadow when 45
Tan60 =h/x
Root3x = h
Then root3x=10+x
Root 3x-x=10
X=10[root3+1]/2
H=5(root 3+1)× root3
H=23.66
Step-by-step explanation:
Similar questions