Math, asked by 9829787138j, 10 months ago

The shadow of a vertical pillar is a same the height of pillar then find angle of elevation.​

Answers

Answered by Anonymous
11

{\underline{\underline{\large{\mathtt{ANSWER:-}}}}}

Angle of elevation is 45°.

{\underline{\underline{\large{\mathtt{EXPLANATION:-}}}}}

GIVEN :

  • The shadow of a vertical pillar is a same the height of pillar.

TO FIND :

  • Angle of elevation.

SOLUTION :

Let the height of the pillar be AB and the shadow of the pillar be BC.

Shadow of the pillar is the same height of pillar.

\sf{Height\:of\:pillar=Shadow\:of\: pillar}

\implies\sf{AB=BC}

Let the angle of elevation be \angle\:ACB=\theta

∆ABC is a right triangle.

In case of ∆ABC,

\sf{\frac{AB}{BC}=tan\theta}

\implies\sf{\frac{BC}{BC}=tan\theta\:[We\:know\:AB=BC]}

\implies\sf{1=tan\theta}

\implies\sf{tan45=tan\theta\:[We\:know\: tan45=1]}

\implies\sf{45=\theta}

Therefore, the angle of elevation is 45°.

______________________________

MORE INFORMATION :

Some formulas related to trigonometry:-

• sin²∅ +cos²∅ = 1

• 1+tan²∅=sec²∅

• 1+cot²∅ = cosec²∅

______________________________

Attachments:
Answered by silentlover45
0

  \huge \mathfrak{Answer:-}

\implies45 = (theta)

\large\underline\mathrm{Given:-}

  • The shadow of a vertical pillar is a same the height of pillar.

\large\underline\mathrm{To \: find}

  • Angle of elevation.

\large\underline\mathrm{Solution}

  • Let the height of the pillar be AB and the shadow of the pillar be BC.
  • Shadow of the pillar is the same height of pillar.

\implies AB = BC

  • Let the angle of elevation be ACB = (theta).

\large\underline\mathrm{∆ABC \: is \: a \: right \: triangle.}

\large\underline\mathrm{In \; ∆ABC,}

\impliesAB/BC = tan(theta)

\impliesBC/BC = tan(theta)

\implies1 = tan(theta)

\impliestan 45° = tan(theta)

\implies45 = (theta)

\large\underline\mathrm{hence,}

\large\underline\mathrm{the \: angle \: of \: elevation \: is \: 45°.}

\large\underline\mathrm{Hope \: it \: helps \: you \: plz \: mark \: me \: brainlist}

Similar questions