Math, asked by binujhanwar375, 3 months ago

the shape of garden is a rectungular in the middle and the Semi circle at the ends. find the area and the perimeter of the garden.
LENGTH=30m
BREATH=5m​

Answers

Answered by shaktisrivastava1234
9

 \huge \fbox{Answer}

 \large \underline{ \underline {\frak{ \color{red}Given:}}}

 \mapsto \sf{Length \:  of  \: rectangle=30m}

 \mapsto \sf{Breadth  \: of  \: rectangle=5m}

 \large \underline{ \underline {\frak{ \color{To}To \:  find:}}}

 \leadsto \sf{Perimeter \: and \:Area   \: of  \: garden. }

 \large \underline{ \underline {\frak{ \color{blue}Formula  \: required:}}}

  \mp{ \boxed{ \rm{Perimeter_{(garden)}=Perimeter_{(rectangle)}+Perimeter _{(semi-circle)}}}} \mp

 \mp { \boxed{ \rm{Area_{(garden)}=Area_{(rectangle)}+Area_{(semi-circle)}}}} \mp

 \large \underline{ \underline {\frak{ \color{indigo}Concept  \: used:}}}

{ \rightarrow \sf{Radius \:  of  \: semi-circle \:  is \:  half \:  of  \: breadth  \: of  \: rectangle.}}

 \large  \underline {\underline{\frak{ \pink{According  \: to  \: Question: }}}}

  { ::\implies{ \sf{Perimeter_{(garden)}=Perimeter_{(rectangle)}+Perimeter _{(semi-circle)}}}}

  { ::\implies{ \sf{Perimeter_{(garden)}=2(length +  breadth)+ \frac{2\pi r}{2} }}}

  { ::\implies{ \sf{Perimeter_{(garden)}=2(length +  breadth)+ \frac{ \cancel 2\pi r}{ \cancel 2} }}}

  { ::\implies{ \sf{Perimeter_{(garden)}=2(length +  breadth)+ {\pi r}}}}

  { ::\implies{ \sf{Perimeter_{(garden)}=2(30m + 5m)+ { \frac{22}{7} \times  \frac{5}{2}m  }}}}

  { ::\implies{ \sf{Perimeter_{(garden)}=2 \times 35m+ { \frac{22}{7} \times  \frac{5}{2}m  }}}}

  { ::\implies{ \sf{Perimeter_{(garden)}=2 \times 35m+ { \frac{ {\cancel {22}}}{7} \times  \frac{5}{ \cancel 2}m  }}}}

  { ::\implies{ \sf{Perimeter_{(garden)}=70m+ { \frac{ {11}}{7} \times  5m  }}}}

  { ::\implies{ \sf{Perimeter_{(garden)}=70m+ { \frac{ {55}}{7} m}}}}

  { ::\implies{ \sf{Perimeter_{(garden)}={ \frac{ {490+55}}{7} m}}}}

  { ::\implies{ \sf{Perimeter_{(garden)}={ \frac{ {545}}{7} m=77.85m}}}}

 \bf{Hence,}

    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \star{ \boxed{ \rm{Perimeter_{(garden)}=77.85m}}}\star

 \bf{Then,}

{:: \implies{ \sf{Area_{(garden)}=Area_{(rectangle)}+Area_{(semi-circle)}}}}

{:: \implies{ \sf{Area_{(garden)}=length \times breadth+ \frac{\pi  {r}^{2} }{2} }}}

{:: \implies{ \sf{Area_{(garden)}=30m×5m+ \frac{ \frac{22}{7}  \times   { \frac{25}{4}} {m}^{2}  }{2} }}}

{:: \implies{ \sf{Area_{(garden)}=150 {m }^{2} + \frac{ \frac{22}{7}  \times   { \frac{25}{4}} {m}^{2}  }{2} }}}

{:: \implies{ \sf{Area_{(garden)}=150{m}^{2} + \frac{ \frac{11}{7}  \times   { \frac{25}{2}} {m}^{2}  }{2} }}}

{:: \implies{ \sf{Area_{(garden)}=150 {m }^{2} + \frac{ \frac{275}{14} {m}^{2}  }{2} }}}

{:: \implies{ \sf{Area_{(garden)}=150 {m }^{2} + { \frac{275}{14}}  \times{2}=189.28{m}^{2} }}}

 \bf{Hence,}

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \star{ \boxed{ \rm{Area_{(garden)}=189.28 {m}^{2}(approx) }}} \star

Attachments:

shaktisrivastava1234: Sorry but your question is not fully explained. So we find only one area of semi-circle. You can see the attachment above.
Similar questions