The shortest distance between the two lines
Answers
Answer:
GIVEN LINES :–
AND —
WRITE THESE LINES IN VECTOR FORM —
FORM OF LINE —
LINES :–
SHORTEST DISTANCE :–
HOPE YOU LIKE IT....
Answer:
GIVEN LINES :–
\frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} 2 x−1 = 3
y−2 = 4
z−3
AND —
\frac{x - 2}{3} = \frac{y - 4}{4} = \frac{ z - 5 }{5} 3x−2 = 4
y−4 = 5
z−5
WRITE THESE LINES IN VECTOR FORM —
FORM OF LINE —
l = a + \alpha ( b)l=a+α(b)
LINES :–
l_{1} = (i + 2j + 3k) + \alpha (2i + 3j + 4k)l
1
=(i+2j+3k)+α(2i+3j+4k)
l_{2} = (2i + 4j + 5k) + \alpha (3i + 4j + 5k)l
2
=(2i+4j+5k)+α(3i+4j+5k)
SHORTEST DISTANCE :–
d = \frac{( a_{2} - a_{1}).( b_{1} \times b_{2})}{ | b_{1} \times b_{2}| }d=
∣b
1 ×b 2 ∣(a 2 −a 1 ).(b 1 ×b )
d = \frac{(i + 2j + 2k).( - i + 2j - k)}{ |( - i + 2j - k) | }d= ∣(−i+2j−k)∣
(i+2j+2k).(−i+2j−k)
d = \frac{ - 1 + 4 - 2}{ \sqrt{1 + 4 + 1} }d= 1+4+1−1+4−2
d = \frac{1}{ \sqrt{6} } unitd= 61unit