Chemistry, asked by vishnuko7, 5 hours ago

The shortest wavelength of the line in hydrogen atomic spectrum of Lyman series where R = 109678 cmrt is​

Answers

Answered by Aryan0123
14

Solution:

For Hydrogen, Z = 1

\\

For shortest wavelength in Lymann series, n₁ = 1, n₂ = ∞

\\

Rydberg's Formula states that:

 \maltese \:  \:  \boxed{ \pink{ \bf{ \dfrac{1}{ \lambda} = R _{h}  \times  {z}^{2} \bigg( \dfrac{1}{(n_1)^{2} }  -  \dfrac{1}{(n_2)^{2} } \bigg)  }}} \\  \\

where:

  • λ is the wavelength
  • Rh is the Rydberg constant = 109678
  • Z is the atomic number
  • n₁ = 1
  • n₂ = ∞

\\

Substitute the given values in the above equation.

\\

 \sf{ \dfrac{1}{ \lambda} = 109678  \times  {1}^{2} \times  \bigg( \dfrac{1}{ {1}^{2} } -  \dfrac{1}{ \infin ^{2} } \bigg)   } \\  \\

\dashrightarrow \:  \:  \sf{ \dfrac{1}{ \lambda}  = (109678 \times 1)  \times  1} \\  \\

\dashrightarrow \:  \:  \sf{ \dfrac{1}{ \lambda}  = 109678 \:  {cm}^{ - 1} } \\  \\

 \dashrightarrow \:  \:  \sf{ \lambda =  \dfrac{1}{109678 \:  \:  {cm}^{ - 1} } } \\  \\

\dashrightarrow \:  \:  \sf{ \lambda = 9.117 \times 10^{ - 6} \: cm } \\  \\

 \dashrightarrow \:  \:  \sf{ \lambda = 911.7 \times  {10}^{ - 10}  \: m} \\  \\

 \dashrightarrow \:  \:  \sf{ \lambda = 911.7  Å} \\  \\

∴ Shortest wavelength of Atomic Hydrogen spectrum in Lyman series = 911.7 Å

Answered by okawde7
0

Answer:

Solution:

For Hydrogen, Z = 1

\begin{gathered}\\\end{gathered}

For shortest wavelength in Lymann series, n₁ = 1, n₂ = ∞

\begin{gathered}\\\end{gathered}

Rydberg's Formula states that:

\begin{gathered} \maltese \: \: \boxed{ \pink{ \bf{ \dfrac{1}{ \lambda} = R _{h} \times {z}^{2} \bigg( \dfrac{1}{(n_1)^{2} } - \dfrac{1}{(n_2)^{2} } \bigg) }}} \\ \\ \end{gathered}

λ

1

=R

h

×z

2

(

(n

1

)

2

1

(n

2

)

2

1

)

where:

λ is the wavelength

Rh is the Rydberg constant = 109678

Z is the atomic number

n₁ = 1

n₂ = ∞

\begin{gathered}\\\end{gathered}

Substitute the given values in the above equation.

\begin{gathered}\\\end{gathered}

\begin{gathered} \sf{ \dfrac{1}{ \lambda} = 109678 \times {1}^{2} \times \bigg( \dfrac{1}{ {1}^{2} } - \dfrac{1}{ \infin ^{2} } \bigg) } \\ \\ \end{gathered}

λ

1

=109678×1

2

×(

1

2

1

2

1

)

\begin{gathered}\dashrightarrow \: \: \sf{ \dfrac{1}{ \lambda} = (109678 \times 1) \times 1} \\ \\ \end{gathered}

λ

1

=(109678×1)×1

\begin{gathered}\dashrightarrow \: \: \sf{ \dfrac{1}{ \lambda} = 109678 \: {cm}^{ - 1} } \\ \\ \end{gathered}

λ

1

=109678cm

−1

\begin{gathered} \dashrightarrow \: \: \sf{ \lambda = \dfrac{1}{109678 \: \: {cm}^{ - 1} } } \\ \\ \end{gathered}

⇢λ=

109678cm

−1

1

\begin{gathered}\dashrightarrow \: \: \sf{ \lambda = 9.117 \times 10^{ - 6} \: cm } \\ \\ \end{gathered}

⇢λ=9.117×10

−6

cm

\begin{gathered} \dashrightarrow \: \: \sf{ \lambda = 911.7 \times {10}^{ - 10} \: m} \\ \\ \end{gathered}

⇢λ=911.7×10

−10

m

\begin{gathered} \dashrightarrow \: \: \sf{ \lambda = 911.7 Å} \\ \\ \end{gathered}

⇢λ=911.7

A

˚

∴ Shortest wavelength of Atomic Hydrogen spectrum in Lyman series = 911.7 Å

Similar questions