The shortest wavelength of the line in hydrogen atomic spectrum of Lyman series where R = 109678 cmrt is
Answers
Solution:
For Hydrogen, Z = 1
For shortest wavelength in Lymann series, n₁ = 1, n₂ = ∞
Rydberg's Formula states that:
where:
- λ is the wavelength
- Rh is the Rydberg constant = 109678
- Z is the atomic number
- n₁ = 1
- n₂ = ∞
Substitute the given values in the above equation.
∴ Shortest wavelength of Atomic Hydrogen spectrum in Lyman series = 911.7 Å
Answer:
Solution:
For Hydrogen, Z = 1
\begin{gathered}\\\end{gathered}
For shortest wavelength in Lymann series, n₁ = 1, n₂ = ∞
\begin{gathered}\\\end{gathered}
Rydberg's Formula states that:
\begin{gathered} \maltese \: \: \boxed{ \pink{ \bf{ \dfrac{1}{ \lambda} = R _{h} \times {z}^{2} \bigg( \dfrac{1}{(n_1)^{2} } - \dfrac{1}{(n_2)^{2} } \bigg) }}} \\ \\ \end{gathered}
✠
λ
1
=R
h
×z
2
(
(n
1
)
2
1
−
(n
2
)
2
1
)
where:
λ is the wavelength
Rh is the Rydberg constant = 109678
Z is the atomic number
n₁ = 1
n₂ = ∞
\begin{gathered}\\\end{gathered}
Substitute the given values in the above equation.
\begin{gathered}\\\end{gathered}
\begin{gathered} \sf{ \dfrac{1}{ \lambda} = 109678 \times {1}^{2} \times \bigg( \dfrac{1}{ {1}^{2} } - \dfrac{1}{ \infin ^{2} } \bigg) } \\ \\ \end{gathered}
λ
1
=109678×1
2
×(
1
2
1
−
∞
2
1
)
\begin{gathered}\dashrightarrow \: \: \sf{ \dfrac{1}{ \lambda} = (109678 \times 1) \times 1} \\ \\ \end{gathered}
⇢
λ
1
=(109678×1)×1
\begin{gathered}\dashrightarrow \: \: \sf{ \dfrac{1}{ \lambda} = 109678 \: {cm}^{ - 1} } \\ \\ \end{gathered}
⇢
λ
1
=109678cm
−1
\begin{gathered} \dashrightarrow \: \: \sf{ \lambda = \dfrac{1}{109678 \: \: {cm}^{ - 1} } } \\ \\ \end{gathered}
⇢λ=
109678cm
−1
1
\begin{gathered}\dashrightarrow \: \: \sf{ \lambda = 9.117 \times 10^{ - 6} \: cm } \\ \\ \end{gathered}
⇢λ=9.117×10
−6
cm
\begin{gathered} \dashrightarrow \: \: \sf{ \lambda = 911.7 \times {10}^{ - 10} \: m} \\ \\ \end{gathered}
⇢λ=911.7×10
−10
m
\begin{gathered} \dashrightarrow \: \: \sf{ \lambda = 911.7 Å} \\ \\ \end{gathered}
⇢λ=911.7
A
˚
∴ Shortest wavelength of Atomic Hydrogen spectrum in Lyman series = 911.7 Å