Math, asked by sayan5553, 2 months ago

The SI on a certain sum for 3 years at 4 per cent is 600. Find the CI on the same sum
at the same rate per cent and in the same time.​

Answers

Answered by SachinGupta01
5

 \bf \:  \underline{Given} :

The Simple Interest on a certain sum for 3 years at 4 per cent is 600.

 \bf \:  \underline{To  \: find} :

We have to find the Compound Interest on the same sum at the same rate % and in the same time.

 \bf   \red{\star}\:  \underline{So,  \: Let's  \: Start }\:   \red{\star}

 \sf \: First  \: of \:  all  \: we  \: have \:  to \:   \: find  \: the  \: Principal.

 \boxed{ \pink{ \sf \: Simple  \: Interest =  \dfrac{P \times R \times T }{100} }}

 \sf \:  \underline{Putting \:  the  \: values}

 \sf \: 600 =  \dfrac{P \times 4 \times 3 }{100}

 \sf \: Rewrite  \: the  \: equation  \: as

 \sf \:   \dfrac{P \times 4 \times 3 }{100}  = 600

 \sf \: Cancel  \: the \:  common \:  factor  \: of  \: 44 \:  and  \: 100

 \sf \:   \dfrac{P  \times 3 }{25}  = 600

 \sf \: Multiply \:  both \:  sides  \: of  \: the  \: equation  \: by \:   25

 \sf \:   \dfrac{P  \times 3 }{25} \:  \times  \: 25  \green{ =} 600 \:  \times   \: 25

 \sf \: Simplify \:  the  \: expression

 \sf \: 3P \:  =  \: 15000

 \sf \: P \:  =  \:  \dfrac{15000}{3}

 \sf \: P \:  =  5000

 \green{ \sf \: So,  \: the \:  Principal  \: (P) = Rs.  \: 5000}

 \sf \: Now,  \: we  \: will \:  find \:  the \:  Amount..

 \boxed{ \pink{ \sf \: Amount = P \bigg( 1 +  \dfrac{R}{100}  \bigg)^{n} }}

 \sf \: Here,

 \sf \bull \longrightarrow \: Principal  \: (P) = Rs.  \:  5000

 \sf \bull \longrightarrow \: Rate \:  of \:  interest  \: (R) = 4 \:  \%

 \sf \bull \longrightarrow \: Time \:  (n) = 3 \:  Years

 \sf \:  \underline{Putting \:  the  \: values}

\sf \:  \longrightarrow \:  5000 \bigg( 1 +  \dfrac{4}{100}  \bigg)^{3}

 \sf \: Cancel \:  the  \: common \:  factor  \: of  \: 44 \:  and  \: 100

\sf \:  \longrightarrow \:  5000 \bigg( 1 +  \dfrac{1}{25}  \bigg)^{3}

 \sf \: Simplify \:   the \:  expression

\sf \:  \longrightarrow \:  5000 \bigg( \dfrac{25 + 1}{25}  \bigg)^{3}

 \sf \:Add \:25 \: and \:1

\sf \:  \longrightarrow \:  5000 \bigg( \dfrac{26}{25}  \bigg)^{3}

 \sf \: Simplify  \: the \: expression

\sf \:  \longrightarrow \:  5000 \bigg( \dfrac{17576}{15625}  \bigg)

 \sf \: Cancel \:the \:common \:  factor \:of \:625

\sf \:  \longrightarrow \:  8 \bigg( \dfrac{17576}{25}  \bigg)

\sf \:  Combine \:  8  \: and \: \dfrac{17576}{25}

\sf \:  \longrightarrow \:   \dfrac{8 \times 17576}{25}

 \sf \: Multiply \:8 \: by \: 17576

\sf \:  \longrightarrow \:   \dfrac{140608}{25}   \:  =  \: 5624.32

 \green{ \sf \: So, \:  the  \: Amount  \: is \:  Rs. \:  5624.32}

 \sf \: Now,  \: the  \: Compound \:  Interest \:  will  \: be :

 \boxed{  \pink{\sf \: Compound  \: interest = Amount  - Principal}}

\sf \: Compound  \: interest = \:  5624.32   - 5000

 \underline{ \boxed{ \purple{\sf \: Compound  \: interest = \:  Rs.  \: 624.32}}}

Similar questions