the side B C of AA BC is produced to point D. the bisector of cA meets sides Beinl. If LAB (230- and LACD 215. Eind 2Alcz
Answers
Answer:
opposite interior es^ prime prime we
get,
loge Delta*ABC
angle ACD= angle CAB+ angle CBA
115^ = angle CAB+30^
angle CAB=115^ -30^
angle CAB=85^
Now, as AL is the bisector of angle A
<CAL = 1/2 CAB
ZCAL = 1/2 (85°)
angle CAL=44 1^ 2
Also, angle ACD is the exterior angle of triangle ALC
Thus,
Again, using the property, "exterior angle of a triangle is equal to the sum of the two opposite interior angles", we get,
In*Delta*A*L_{C}
angle ACD= angle CAL+ angle ALC
115=44 1 2 + angle ALC
=115-44 1^ 2 angle ALC=1
angle ALC=72 1^ 2
Thus, angle ALC=72 1^ 2
Answer:
Answer:
opposite interior es^ prime prime we
get,
loge Delta*ABC
angle ACD= angle CAB+ angle CBA
115^ = angle CAB+30^
angle CAB=115^ -30^
angle CAB=85^
Now, as AL is the bisector of angle A
<CAL = 1/2 CAB
ZCAL = 1/2 (85°)
angle CAL=44 1^ 2
Also, angle ACD is the exterior angle of triangle ALC
Thus,
Again, using the property, "exterior angle of a triangle is equal to the sum of the two opposite interior angles", we get,
In*Delta*A*L_{C}
angle ACD= angle CAL+ angle ALC
115=44 1 2 + angle ALC
=115-44 1^ 2 angle ALC=1
angle ALC=72 1^ 2
Thus, angle ALC=72 1^ 2