Math, asked by rahman3786, 9 months ago

The side BC of ΔABC is produced to D. If ∠ACD = 114° and ∠ABC= (1/2)∠BAC, then what is the value of ∠BAC ?​

Answers

Answered by Anonymous
39

\huge\sf\red{Given\::}

  • \sf \angle ACD\: = \:114\degree
  • \sf \angle ABC\:=\:\dfrac{1}{2}\:\angle BAC

\huge\sf\blue{To\:Find\::}

  • \sf The\: value\:  of \:\angle BAC

\huge\sf\purple{Solution\::}

\sf Let,

  • \sf \angle ABC \: = \: x
  • \sf \angle BAC \:=\: 2x

\sf\underline{Now,\:By\:using\: exterior\: angle\: property}

\longrightarrow\:\:\sf \angle BAC \:=\:\angle ABC \:=\: \angle ACD

\longrightarrow\:\:\sf 2x\:+\:x\:=\:144\degree

\longrightarrow\:\:\sf 3x\:=\:144\degree

\longrightarrow\:\:\sf x\:=\:\dfrac{\cancel{144\degree}}{\cancel{3}}

\longrightarrow\:\:\sf x\:=\:38\degree

\sf Put \:the\:x\: value\:in\:\angle BAC

\longrightarrow\:\:\sf 2\:\times\:38\degree

\longrightarrow\:\:\sf 76\degree

\sf\star\:\:\underline\pink{Hence, \:\angle BAC\:is\:76\degree}

Attachments:
Answered by yashvardhansingh163
1

Answer:

Given

The side BC of ΔABC is produced to D

∠ACD = 114°

∠ABC= (1/2)∠BAC

Find out

Find the value of ∠BAC

Solution

★ Let the ∠ABC be x and ∠BAC be 2x

**According to exterior angle property**

An exterior angle of a triangle is equal to the sum of the opposite interior angles.

→ ∠BAC + ∠ABC = ∠ACD

→ 2x + x = 114°

→ 3x = 114°

→ x = 114/3

→ x = 38°

Hence,

∠ABC = x = 38°

∠BAC = 2x = 38 × 2 = 76°

Additional Information

★If two parallel lines are cut by a transversal,then

Pairs of corresponding angles are equal

pairs of alternate angles are equal

interior angles on the same side of the transversal are supplementary

Similar questions