Math, asked by nandini8622, 5 months ago

the side of a rhombus is 5cm if the length of one diagonal of the rhombus is 8cm, then find the length of the other diagonal​

Answers

Answered by Mysterioushine
32

Given :

  • The side of rhombus = 5 cm
  • One of the length of diagonal of rhombus = 8 cm

To Find :

  • The length of the other diagonal

Solution :

The relation between the diagonals and sides of a rhombus is given by ,

 \\  \star \: {\boxed{\sf{\purple{ \bigg( \dfrac{d_1}{2}  \bigg)^{2}  +  \bigg( \dfrac{d_2}{2} \bigg)^{2}  =   {s}^{2} }}}}

 \\ \\  \sf{where}\begin{cases} & \sf{d_1  \& \: d_2 \: are \: diagonal \: of \: rhombus} \\   \\ & \sf{s \: is \: side \: of \: the \: rhombus}\end{cases}\\ \\

Substituting the values we have ,

 \\  :  \implies \sf \bigg( \dfrac{8}{2} \bigg)^{2}   +  { \bigg( \dfrac{d_2}{2} \bigg) }^{2}  =  {(5)}^{2}  \\  \\

 \\   : \implies \sf \:  {(4)}^{2}  +  { \bigg( \dfrac{d_2}{2}  \bigg)}^{2}  = 25 \\  \\

 \\   : \implies \sf 16 +  { \bigg( \dfrac{d_2}{2}  \bigg)}^{2}  = 25 \\  \\

 \\   : \implies \sf \: { \bigg( \dfrac{d_2}{2}  \bigg)}^{2}  = 25 - 16 \\  \\

 \\   : \implies \sf \: { \bigg( \dfrac{d_2}{2}  \bigg)}^{2}  = 9 \\  \\

 \\   : \implies \sf \: \bigg( \dfrac{d_2}{2}  \bigg) =  \sqrt{9}  \\  \\

 \\  :  \implies \sf \:\dfrac{d_2}{2} = 3 \\  \\

 \\   : \implies \sf \:d_2 = 3 \times 2 \\  \\

 \\    :  \implies \sf{\underline{\boxed {\mathfrak{\pink{d_2 = 6 \: cm}}}}}  \: \bigstar \\  \\

Hence ,

  • The length of the other diagonal of the given rhombus is 6 cm
Answered by dibyangshughosh309
49

 \huge{ \underline{ \bf{Given \:  : }}}

  • side of rhombus = 5cm
  • one diagonal = 8cm

 \huge{ \underline{ \bf{To \:  Find \:  : }}}

  • the length of the other diagonal

 \huge{ \underline{ \underline{ \mathrm{Solution \:  :  - }}}}

As we know,

The relation between the diagonals and sides of a rhombus is:

  \purple \leadsto\red{ \underline{ \underline{ \boxed{ \tt{ \green{( \frac{d _1 }{2} ) {}^{2}   + ( \frac{d _2 }{2} ) {}^{2}  =  {s}^{2} }}}}}}

 \tt \to( \cancel \frac{8}{2} ) {}^{2}  + ( \frac{d  _2 }{2} ) {}^{2}  =  {5}^{2}

 \tt \to(4 {)}^{2}  +(  \frac{d _2 }{2} ) {}^{2}  = 25

 \tt \to16 + ( \frac{d _2 }{2} ) {}^{2}  = 25

 \tt \to( \frac{d _2}{2}  ) {}^{2}  = 25 - 16

 \tt \to \:  \frac{d _2 }{2}  =  \sqrt{9}

 \tt \to \: d_2 = 3 \times 2

 \tt \to \: d_2 = 6

 \pink \star{ \green{ \boxed{ \red{ \tt  \: d_2 = 6cm}}}}

Therefore, the length of the other diagonal is 6cm.

Similar questions