Math, asked by hemav023, 3 months ago

The side of a right angle triangle is 17 cm less than the other side. If length of hypoter
25 cm, find the length of both sides.p

Answers

Answered by Anonymous
61

Given: The side of a right angle triangle is 17 cm less than the other side. length of hypotenuse is 25 cm

To Be Found: The length of the other sides.

⠀⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀⠀

❒ Let the side AB be x and the side Bc be x - 17 respectively.

 \\

{ \underline{ \bigstar{ \boldsymbol{ According \: to \: the \: question : }}}}

  • The measure of the hypotenuse is 25cm , and now we have to find the lengths of the other 2 sides using suitable properties.

 \\

{ \underline{ \underline{ \red{ \rm {Pythagoras \: therom : }}}}}

★ Pythagoras therom states that the square if hypotenuse equal to the sum of the squares of the other two sides.

 \\

{ \underline{ \frak{As \: we \: know \: that \dag}}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:   \dag{ \bigg( \rm  {Hypotenuse}^{2}  =  {Base}^{2}  +  {Side}^{2} } \bigg)

 \\

Where,

  • ➱ Hypotenuse = 25cm
  • ➱ Base = X - 17
  • ➱ Side = X

 \\

Here,

{ : \implies}{ \bf{ {(AC)}^{2}   =  {(AB)}^{2}  +  {(BC)}^{2} }}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \: \:  \:  \\  \\ \\ { : \implies} { \bf{ {(25)}^{2}  =  {(x)}^{2}  +  {(x  -  17)}^{2} }}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\   \\ { : \implies}\bf \: 625  =  {x}^{2}   +  {x}^{2}   -  2(x)(17) +  {17}^{2}  \\  \\  \\ { : \implies} \bf625    =  {2x}^{2}   - 34x   + 289 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\ { : \implies} \bf  2 {x}^{2}  - 34x + 289 - 625 = 0 \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \\  \\ { : \implies} \bf 2{x}^{2}  - 34x - 336 = 0 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \\

Fractorising The quadratic equation,

{ : \implies} \bf 2 {x}^{2}  - 34x - 336 = 0  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  \\ { : \implies} \bf 2 {x}^{2}    +  14x - 48x - 336 = 0 \\  \\  \\ { : \implies} \bf 2x(x + 7) - 48(x + 7) \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\ { : \implies} \bf (2x - 48)(x + 7) \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \\

Finding Roots :

Case-----(1)

★2x - 48 = 0

★2x = 48

★x = 24

Case-----(2)

x + 7 = 0

x = 0 - 7

x = -7

We know that,

  • ↝ Height can't be negetive, so x = 24cm

Now,

  • The other side = x - 17 = 24 - 17 = 7cm

Therefore,

{\boxed{\boxed{\rm{The\: other \:2 \:sides \:are \:24\: cm \:and \:7cm }}}}

⠀⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀⠀

Attachments:
Answered by Anonymous
41

Answer :

  • The Other two sides is 24cm and 7cm

Given :

  • The side of a right angle triangle is 17cm less than the other side
  • Length of hypotenuse = 25cm

To find :

  • Length of both sides

Solution :

  • Let the base of right angle triangle be xcm
  • Other be (x - 17cm)

And also Given that,

  • Hypotenuse = 25cm

As we know that, Pythagoras theorem:

  • (b)² + (p)² = (h)²

where, b is base xcm , p is perpendicular (x - 17)cm and h is hypothenuse 25cm

》(b)² + (p)² = (h)²

》(x)² + (x - 17)² = (25)²

》x² + x² - 34x + 289 = 625

》2x² - 34x + 289 = 625

》2x² - 34x - ( 625 - 289 ) = 0

》2x² - 34x - 336 = 0

》2x² + 14x - 48x - 336 = 0

》2x(x + 7) - 48(x + 7) = 0

》(x + 7)(2x - 48) = 0

Then

》x + 7 = 0

》x = 0 - 7

》x = - 7

》2x - 48 = 0

》2x = 48

》x = 48/2

》x = 24

  • Side of triangle can't be negative then side = 24cm
  • Other side = (x - 17) = 24 - 17 = 7cm

Hence , Other two sides is 24cm and 7cm

Similar questions