Physics, asked by asadali1407p44y4s, 1 year ago

The side of a square increases uniformly at rate of 1cm/sec. At what rate is the area increasing when the side of square is 6m.

Answers

Answered by prazaya
6

Answer:

Explanation

Area = l^2

dA/dt = dl^2/dt

Or ....... 2l×dl/dt

Or..........2×6 ×0.01

dA/dt = 0.12 m^2/sec

Answered by krishna210398
2

Answer:

0.12m^{2} /s

Explanation:

Let side of square = L m

and Area of square be A m^{2}

Rate of increase of side of a square = \frac{dL}{dT}

                           \frac{dL}{dT}= 1cm/s=0.01m/s

Rate of increase of Area of Square =\frac{dA}{dT}

                           A = L^{2}

                           \frac{dA}{dT} = \frac{dL^{2} }{dT}

                           \frac{dA}{dT} = 2L\frac{dL}{dT}

                           \frac{dA}{dT} ( at L=6m) =2*6m*0.01m/s

                           \frac{dA}{dT} ( at L=6m) =0.12m^{2} /s

#SPJ2

                         

Similar questions