Math, asked by yashjain1483, 24 days ago

The side of a traingle are 3cm,3cm and 5 cm . Find its area​

Answers

Answered by Anonymous
25

Given :

  • 1st side of Triangle = 3 cm
  • 2nd side of triangle = 3 cm
  • 3rd side of triangle = 5 cm

 \\ \\

To Find :

  • Area = ?

 \\ \\

SolutioN :

 \dag Calculating the Semi - Perimeter :

 \bigstar As we know the formula for Semi - Perimeter :

 \large{\star{\pmb{\underline{\boxed{\pmb{\sf{ Semi - Perimeter = \dfrac{ S_1 + S_2 + S_3}{2} }}}}}}}\star

 \\

 \\ \qquad{\rule{150pt}{1pt}}

 \bigstar Putting the Values :

 {\implies{\qquad{\sf{ Semi - Perimeter = \dfrac{S_1 + S_2 + S_3}{2} }}}} \\ \\ \\ \ {\implies{\qquad{\sf{ Semi - Perimeter = \dfrac{3 + 3 + 5}{2} }}}} \\ \\ \\ \ {\implies{\qquad{\sf{ Semi - Perimeter = \dfrac{11}{2} }}}} \\ \\ \\ \ {\implies{\qquad{\sf{ Semi - Perimeter = \cancel\dfrac{11}{2} }}}} \\ \\ \\ \ {\qquad \; \; {\therefore \; {\underline{\boxed{\purple{\pmb{\sf{ Semi - Perimeter = 5.5 \; cm }}}}}}}}

 \\ \qquad{\rule{150pt}{1pt}}

 \dag Calculating the Area :

 \bigstar As we know the formula for Area :

 \large{\star{\pmb{\underline{\boxed{\pmb{\sf{ Area = \sqrt{s (s - a)(s - b)(s - c)} }}}}}}}\star

 \\

 \\ \qquad{\rule{150pt}{1pt}}

 \bigstar Putting th Values :

 {\dashrightarrow{\qquad{\sf{ Area = \sqrt{s (s - a)(s - b)(s - c)} }}}} \\ \\ \\ \ {\dashrightarrow{\qquad{\sf{ Area = \sqrt{5.5 (5.5 - 3)(5.5 - 3)(5.5 - 5)} }}}} \\ \\ \\ \ {\dashrightarrow{\qquad{\sf{ Area = \sqrt{5.5 \times 2.5 \times 2.5 \times 0.5} }}}} \\ \\ \\ \ {\dashrightarrow{\qquad{\sf{ Area = \sqrt{0.5 \times 11 \times 0.5 \times 5 \times 0.5 \times 5 \times 0.5} }}}} \\ \\ \\ \ {\dashrightarrow{\qquad{\sf{ Area = 0.5 \times 0.5 \times 5 \times \sqrt{11} }}}} \\ \\ \\ \ {\dashrightarrow{\qquad{\sf{ Area = 0.5 \times 2.5 \times \sqrt{11} }}}} \\ \\ \\ \ {\dashrightarrow{\qquad{\sf{ Area = 1.25 \times \sqrt{11} }}}} \\ \\ \\ \ {\qquad \; \; {\therefore \; {\underline{\boxed{\red{\pmb{\sf{ Area = 1.25 \sqrt{11} \; {cm}^{2} }}}}}}}}

 \\ \qquad{\rule{150pt}{1pt}}

 \dag Therefore :

❛❛ Area of the given Triangle is 1.2511 cm² . ❜❜

 \\ {\underline{\rule{300pt}{9pt}}}

Similar questions