Math, asked by harishjain99, 2 months ago

The side of a triangle are in A.P and its area is 3/5th the area of the equilateral triangle of same perimeter . The sides of triangle are in Ratio :-
a)1:2:√7
b)2:3:5
c)1:6:7
d)3:5:7​

Answers

Answered by Evilhalt
407

{ \boxed{ \color{blue}{  \bold{Question :–}}}}

The side of a triangle are in A.P and its area is 3/5th the area of the equilateral triangle of same perimeter . The sides of triangle are in Ratio :-

a)1:2:√7

b)2:3:5

c)1:6:7

d)3:5:7

{ \boxed{ \color{blue}{  \bold{ Answer :–}}}}

  • 3 : 5 : 7

{ \boxed{ \color{blue}{  \bold{ Solution :–}}}}

 \sf{let \: the \: side \: of \: a \: triangle \: be \: (a - d),(a),(a + d)}

 \sf{Perimeter  \: of  \: the \:  triangle  \:  = a - d + a + a + d = 3(a)}

 \sf{ \therefore \: Each \: side \: of \: a \: equilateral \: triangle \:  =  \frac{3a}{2} }

 \sf{ \therefore \: Area \:  of \:  equilateral  \: triangle  \:  =  \frac{ \sqrt{3} }{4}   \: {a}^{2} }

  • Area of given triangle ∆

 \circ \:  \:   \: { \boxed{ \color{red}{ \sqrt{s(s - (a - d)(s - a)( s-a + d) } }}}

  • where s =  \rm{ \frac{3a}{2} }

 \sf{⇒ \sqrt{ \frac{3a}{2}  \left[ \frac{3a}{2}  - a + a \right] \left[ \frac{3a}{2}  - a \right] \left[ \frac{3a}{2}  - a  -  d \right]}}

 \sf{⇒ \sqrt{ \frac{3a}{2}  \left[  \frac{1}{2}  - a + a \right] \left[ \frac{1}{2}  a \right] \left[ \frac{1}{2} a  -  d \right]}}

 \sf{⇒ \sqrt{ \frac{3}{1}  \:  {a}^{2}  \left[  \frac{1}{4} \:   {a}^{2}  -  {d}^{2}  \right]}}

  • Given  \sf{ \sqrt{ \frac{3}{4} \:  {a}^{2}   -  \frac{3}{4}  \:  {a}^{2}  \: {d}^{2}  }} =  \frac{3}{5}  \times  \frac{ \sqrt{3} }{4} \:   {a}^{2}

  :  \implies\sf{ =  \frac{3}{16}  {a}^{4} -  \frac{3}{4}  {a}^{2}  {d}^{2}  =  \left[  \frac{3 \sqrt{3} }{20} \:  {a}^{2}  \right] }

  :  \implies\sf{ =  \frac{3}{16}  {a}^{4} -  \frac{3}{4}  {a}^{2}  {d}^{2}  =  \frac{27}{400} {a}^{4}  }

  :  \implies\sf{ =  \frac{3}{16}  {a}^{4} - \frac{27}{400} {a}^{4}   =   \frac{3}{4}  {a}^{2}  {d}^{2}}

  :  \implies\sf{ =  \frac{1}{16}  {a}^{2} - \frac{9}{400} {a}^{4}   =   \frac{1}{4} {d}^{2}}

  :  \implies\sf{ =  \frac{25 {a}^{2}  - 9 {a}^{2} }{400} =  \frac{1}{4} \:  {d}^{2}   }

  :  \implies\sf{ =  \frac{16 \:  {a}^{2} }{400}  =  \frac{1}{4}  \:  {a}^{2} }

  :  \implies\sf{ =  \frac{ {a}^{2} }{ {d}^{2} } =  \frac{400}{64} }

  :  \implies\sf{ =  \frac{ {a}}{ {d}} =  \frac{ \sqrt{400} }{ \sqrt{64} } }

  :  \implies\sf{ =  \frac{ {a}}{ {d}} =   \frac{20}{8} }

  :  \implies\sf{ =  \frac{ {a}}{ {d}} = k}

  • calculate the ratio

 \leadsto \:  \sf{ (a - d) \ratio(a) \ratio(a + d)}

 \leadsto \:  \sf{ (20k - 8k) \ratio(20k) \ratio(20k + 8k)}

 \leadsto \:  \sf{ (12k) \ratio(20k) \ratio(28k)}

 \leadsto \:  \sf{3 \ratio \: 5 \ratio \: 7 }

 \sf \pink{hence \: option \:( d) \: is \: correct}

Answered by muskansingh3707126
3

Step-by-step explanation:

{ \boxed{ \color{blue}{  \bold{Question :–}}}}

The side of a triangle are in A.P and its area is 3/5th the area of the equilateral triangle of same perimeter . The sides of triangle are in Ratio :-

a)1:2:√7

b)2:3:5

c)1:6:7

d)3:5:7

{ \boxed{ \color{blue}{  \bold{ Answer :–}}}}

3 : 5 : 7

{ \boxed{ \color{blue}{  \bold{ Solution :–}}}}

 \sf{let \: the \: side \: of \: a \: triangle \: be \: (a - d),(a),(a + d)}

 \sf{Perimeter  \: of  \: the \:  triangle  \:  = a - d + a + a + d = 3(a)}

 \sf{ \therefore \: Each \: side \: of \: a \: equilateral \: triangle \:  =  \frac{3a}{2} }

 \sf{ \therefore \: Area \:  of \:  equilateral  \: triangle  \:  =  \frac{ \sqrt{3} }{4}   \: {a}^{2} }

Area of given triangle ∆

 \circ \:  \:   \: { \boxed{ \color{red}{ \sqrt{s(s - (a - d)(s - a)( s-a + d) } }}}

where s =  \rm{ \frac{3a}{2} }

 \sf{⇒ \sqrt{ \frac{3a}{2}  \left[ \frac{3a}{2}  - a + a \right] \left[ \frac{3a}{2}  - a \right] \left[ \frac{3a}{2}  - a  -  d \right]}}

 \sf{⇒ \sqrt{ \frac{3a}{2}  \left[  \frac{1}{2}  - a + a \right] \left[ \frac{1}{2}  a \right] \left[ \frac{1}{2} a  -  d \right]}}

 \sf{⇒ \sqrt{ \frac{3}{1}  \:  {a}^{2}  \left[  \frac{1}{4} \:   {a}^{2}  -  {d}^{2}  \right]}}

Given  \sf{ \sqrt{ \frac{3}{4} \:  {a}^{2}   -  \frac{3}{4}  \:  {a}^{2}  \: {d}^{2}  }} =  \frac{3}{5}  \times  \frac{ \sqrt{3} }{4} \:   {a}^{2}

  :  \implies\sf{ =  \frac{3}{16}  {a}^{4} -  \frac{3}{4}  {a}^{2}  {d}^{2}  =  \left[  \frac{3 \sqrt{3} }{20} \:  {a}^{2}  \right] }

  :  \implies\sf{ =  \frac{3}{16}  {a}^{4} -  \frac{3}{4}  {a}^{2}  {d}^{2}  =  \frac{27}{400} {a}^{4}  }

  :  \implies\sf{ =  \frac{3}{16}  {a}^{4} - \frac{27}{400} {a}^{4}   =   \frac{3}{4}  {a}^{2}  {d}^{2}}

  :  \implies\sf{ =  \frac{1}{16}  {a}^{2} - \frac{9}{400} {a}^{4}   =   \frac{1}{4} {d}^{2}}

  :  \implies\sf{ =  \frac{25 {a}^{2}  - 9 {a}^{2} }{400} =  \frac{1}{4} \:  {d}^{2}   }

  :  \implies\sf{ =  \frac{16 \:  {a}^{2} }{400}  =  \frac{1}{4}  \:  {a}^{2} }

  :  \implies\sf{ =  \frac{ {a}^{2} }{ {d}^{2} } =  \frac{400}{64} }

  :  \implies\sf{ =  \frac{ {a}}{ {d}} =  \frac{ \sqrt{400} }{ \sqrt{64} } }

  :  \implies\sf{ =  \frac{ {a}}{ {d}} =   \frac{20}{8} }

  :  \implies\sf{ =  \frac{ {a}}{ {d}} = k}

calculate the ratio

 \leadsto \:  \sf{ (a - d) \ratio(a) \ratio(a + d)}

 \leadsto \:  \sf{ (20k - 8k) \ratio(20k) \ratio(20k + 8k)}

 \leadsto \:  \sf{ (12k) \ratio(20k) \ratio(28k)}

 \leadsto \:  \sf{3 \ratio \: 5 \ratio \: 7 }

 \sf \pink{hence \: option \:( d) \: is \: correct}.

muskan

Similar questions