Math, asked by dangerdevil874, 9 months ago

The side of a triangle are in the ratio of 3 ratio 4 ratio 5 if its perimeter is 36
then what is its area

Answers

Answered by IᴛᴢBʟᴜsʜʏQᴜᴇᴇɴ
1

Answer:

The area of triangle is 54 cm². Step-by-step explanation: It is given that the sides of a triangle are in the ratio 3 : 4 : 5.

Step-by-step explanation:

Pls mark as brainliast and follow me✌

Answered by chaitragouda8296
1

Given :

The ratio of sides of are in the ratio 3 : 4 : 5 .

Perimeter of is 36 units .

Formulas required :

perimeter  \:  \: (p)\:  \:  = a + b + c

semiperimeter  \:  \: (s)\:  \:  =  \frac{a + b + c}{2}

area \: \:  of \:  \: triangle \:  \:  =  \sqrt{s(s - a)(s - b)(s - c)}

Solution :

Let the common ratio be " k " .

Therefore ,,,

The sides of the are : a = 3k

b = 4k

c = 5k

Perimeter ( p ) = a + b + c

36 = 3k + 4k + 5k

36 = 12k

k = 36 / 12

k = 3

a = 3k = 3 × 3 = 9 units

b = 4k = 4 × 3 = 12 units

c = 5k = 5 × 3 = 15 units

s \:  =  \frac{a +  b+ c}{2}  \\  \\  \:  \:  =  \frac{36}{2}  \\  \\  s  \:  = 18

area \:  \: of \:  \: triangle \:  =  \sqrt{s(s - a)(s - b)(s - c)}  \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \sqrt{18(18 - 9)(18 - 12)(18 - 15)}  \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \sqrt{18 \times 9 \times 6 \times 3}  \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \sqrt{18 \times 9 \times 18}  \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  { \sqrt{18} }^{2}  \times  \sqrt{9}  \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = 18 \times 3 \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = 54 \:  \: sq.units

Area of = 54 sq. units

Hope it's helpful ......

Please mark it as Brainliest .....

Similar questions