Math, asked by abhishekkumar9871480, 8 months ago

The side of a tringle are in the ratio 4: 5:6 and its perimeter is 45 cm .Find the area of the triangle.​

Answers

Answered by TheShadowLife
37

the side of a triangle are in ratio 4:5:6

And its perimeter is 45 CM .

so,

To Find The Area ,

let the ratio Be in X .

4x,5x,6x

Now ,

according to the given question,

4x + 5x + 6x = 45

15x = 45

x =  \frac{45}{15}  = 3

so, X=3

4x = 4 \times 3 = 12

5x = 5 \times 3 = 15

6x = 6 \times 3 = 18

 \small\huge{{ \triangle}}

sides according to the given figure .

Answered by silentlover45
32

\underline\mathfrak\pink{Given:-}

  • The side of a tringle are in the ratio 4 : 5 : 6
  • its perimeter is 45 cm.

\large\underline\mathfrak{To \: find:-}

  • Find the area of the triangle. ....?

\large\underline\mathfrak\pink{Solutions:-}

Let the sides of triangle be x.

So the side will be 4x, 5x, and 6x.

  • a = 4x
  • b = 5x
  • c = 6x

✰ Perimeter = a + b + c

\: \: \: \: \: \leadsto \: \: \: {45} \: \: = \: \: {4x} \: + \: {5x} \: + \: {6x}

\: \: \: \: \: \leadsto \: \: \: {45} \: \: = \: \: {15x}

\: \: \: \: \: \leadsto \: \: \: {x} \: \: = \: \: \frac{45}{15}

\: \: \: \: \: \leadsto \: \: \: {x} \: \: = \: \: {3}

Therefore, Each side are :-

⟹ 4x = 4 × 3 = 12

⟹ 5x = 5 × 3 = 15

⟹ 6x = 6 × 3 = 18

Now,

Area of ∆ABC

The sides of a triangle are:-

  • a = 12 cm
  • b = 15 cm
  • c = 18 cm

\: \: \: \: \: \therefore \: \: Area \: \: of \: \: triangle \: \: by \: \: heroes's \: \: formula:-

\: \: \: \: \:  \sqrt{s \: (s \: - \: a) \: (s \: - \: b) \: (s \: - \: c)}

\: \: \: \: \: \leadsto \: \: S \: \: = \: \: \frac{a \: + \: b \: + \: c}{2}

⟹ a ⇢ 12 cm

⟹ b ⇢ 15 cm

⟹ c ⇢ 18 cm

\: \: \: \: \: \leadsto \: \: S \: \: = \: \: \frac{{12} \: + \: {15} \: + \: {18}}{2}

\: \: \: \: \: \leadsto \: \: S \: \: = \: \: \frac{45}{2}

\: \: \: \: \: \leadsto \: \: S \: \: = \: \: {22.5}

\: \: \: \: \: \therefore \: \: \: Area \: \: of \: \: triangular \: \: field:-

\: \: \: \: \: \leadsto \: \: \sqrt{{22.5} \: ({22.5} \: - \: {12}) \: ({22.5} \: - \: {15}) \: ({22.5} \: - \: {18})}

\: \: \: \: \: \leadsto \: \: \sqrt{{22.5} \: \times \: {(10.5)} \:  \times \: {(7.5)} \: \times  \: {(4.5)}}

\: \: \: \: \: \leadsto \: \: \sqrt{7973.4}

\: \: \: \: \: \leadsto \: \: {89.29} \: {cm}^{2}

\: \: \: \: \: \: Hence, \\ \: \: \therefore \: \: Area \: \: of \: \: triangle \: \: \leadsto \: \: {89.29} \: {cm}^{2}

______________________________________

______________________________________

Similar questions