Math, asked by mehakbibhar2000, 11 months ago

the side of an equaleteral triangle is 8cm, finds its area​

Answers

Answered by VishalSharma01
51

Answer:

Step-by-step explanation:

\underline{\bold{Given:-}}

Side of the Equilateral Triangle = 8 cm

\underline{\bold{To \: Find:-}}

Area of Triangle

\underline{\bold{Formula \: to \: be \: used:-}}

\bf By \: \underline{Heron's \: Formula} \: i.e \: \sqrt{[s(s-a)(s-b)(s-c)]}

\underline{\bold{Solution:-}}

\sf Semiperimeter=\frac{8+8+8}{2} =\frac{24}{2} =12

Now. Area of Triangle

\sf\implies Area \: of \: Triangle= \sqrt{[s(s-a)(s-b)(s-c)]}

\sf\implies Area \: of \: Triangle=\sqrt{[12\times4\times4\times4]}

\bf\implies Area \: of \: Triangle=16\sqrt{3} \: cm^2

Answered by RvChaudharY50
35

\huge\underline\purple{\mathcal Question:-} we have to find area of equilateral ∆.

\huge\underline\blue{\sf Given:} :-- side is 8cm .

\green{\bold{\underline{\underline{Step\:by\:step\:explanation:}}}}

we know that, Area of equilateral ∆ with side a each is = \large\red{\boxed{\sf \frac{ \sqrt{3} }{4} ( {a}^{2} )}}

so, area of ∆ with side 8 will be ===

  \frac{ \sqrt{3} }{4} ( {8}^{2} ) = 16 \sqrt{3}  \: cm^{2}

Similar questions