Math, asked by aqibshaikh1362, 1 year ago

The side of rhombus is 61 m & the area is 1320 sqm. find the sum of its diagonals?

Answers

Answered by valetta
1

Answer:

p + q = 142    sum of the diagonal

Explanation:

Side length of the Rhombus = 61 meter.

We know the formula to find the area of Rhombus.

Area = \frac{p*q}{2}

Where p & q are the diagonal of the rhombus.

1320 = \frac{p*q}{2}

p*q = 1320*2 = 2640   ------------------------------ (1)

Relation between diagonal and side of the rhombus:-

a = \frac{\sqrt{p^{2} + q^{2}  } }{2}

Where "a" is the side

61*2  = \sqrt{p^{2} + q^{2}  }

122² = p² + q²

p² + q² = 14884 --------------------------(2)

Identity ( p + q)² = p² + q² + 2pq

(p + q)² = 14884 + 2(2640)

(p + q)² = 14884 + 5280 = 20164

p + q = 142    sum of the diagonal

Explanation:

Side length of the Rhombus = 61 meter.

We know the formula to find the area of Rhombus.

Area = \frac{p*q}{2}

Where p & q are the diagonal of the rhombus.

1320 = \frac{p*q}{2}

p*q = 1320*2 = 2640   ------------------------------ (1)

Relation between diagonal and side of the rhombus:-

a = \frac{\sqrt{p^{2} + q^{2}  } }{2}

Where "a" is the side

61*2  = \sqrt{p^{2} + q^{2}  }

122² = p² + q²

p² + q² = 14884 --------------------------(2)

Identity ( p + q)² = p² + q² + 2pq

(p + q)² = 14884 + 2(2640)

(p + q)² = 14884 + 5280 = 20164

p + q = 142    sum of the diagonal

Explanation:

Side length of the Rhombus = 61 meter.

We know the formula to find the area of Rhombus.

Area = \frac{p*q}{2}

Where p & q are the diagonal of the rhombus.

1320 = \frac{p*q}{2}

p*q = 1320*2 = 2640   ------------------------------ (1)

Relation between diagonal and side of the rhombus:-

a = \frac{\sqrt{p^{2} + q^{2}  } }{2}

Where "a" is the side

61*2  = \sqrt{p^{2} + q^{2}  }

122² = p² + q²

p² + q² = 14884 --------------------------(2)

Identity ( p + q)² = p² + q² + 2pq

(p + q)² = 14884 + 2(2640)

(p + q)² = 14884 + 5280 = 20164

p + q = 142    sum of the diagonal

Similar questions