Math, asked by oko63571, 3 months ago

the side of triangle 8 cm 5 cm and 5 cm. find its area​

Answers

Answered by chanakyag66
0

Answer:

12 cm²

Step-by-step explanation:

Let the triangle be ABC where AB=AC=5cm and BC=8cm

Draw the altitude(height) from A to BC. Let D be the point on which the altitude intersects BC.

Now In ∆ADB,

Ad²+BD²=AB²(Pythagoras theorem)

AD=√AB²-BD². [BD=BC/2=4cm]

AD=√5²-4²

AD=√25-16

AD=√9

So,AD=3cm

Area of ∆ABC = 1/2xBasexHeight

=1/2xBCxAD

=1/2×4×3

So,Area of ABC is 12cm²

Answered by Ladylaurel
2

Answer :-

  • The area of the triangle is 12cm².

Step-by-step explanation :-

To Find :-

  • The area of triangle

Solution :-

Given that,

  • The sides of triangle are 8cm, 5cm and 5cm

First we need to find out the semi-perimeter of the triangle,

As we know that,

 \boxed{\bf{Semi-perimeter = \dfrac{a + b + c}{2}}}

Where,

  • a, b and c are the three sides of triangle

\sf{ \longmapsto \: Semi-perimeter = \dfrac{a + b + c}{2}} \\  \\  \\ \sf{ \longmapsto \:  \dfrac{8 + 5 + 5}{2}} \\  \\  \\ \sf{ \longmapsto \:  \dfrac{8 + 10}{2}} \\  \\  \\ \sf{ \longmapsto \:  \dfrac{18}{2}} \\  \\  \\ \sf{ \longmapsto \:  \cancel{\dfrac{18}{2}}} \\  \\  \\ \bf{ \longmapsto \:  9}

Now, the area of triangle is,

As we know that,

 \boxed{\bf{Area \: of \: \triangle = \sqrt{s(s - a)(s - b)(s - c)}}}

Therefore,

\sf{ \longmapsto \: Area = \sqrt{9(9 - 8)(9 - 5)(9 - 5)}} \\  \\  \\ \sf{ \longmapsto \: Area = \sqrt{9(1)(4)(4)}} \\  \\  \\ \sf{ \longmapsto \: Area = \sqrt{9 \times 1 \times 4 \times 4}} \\  \\  \\ \sf{ \longmapsto \: Area = \sqrt{9 \times 4 \times 4}} \\  \\  \\ \sf{ \longmapsto \: Area = \sqrt{36 \times 4}} \\  \\  \\ \sf{ \longmapsto \: Area = \sqrt{144}} \\  \\  \\ \bf{ \longmapsto \: Area = 12}

  • The area of the triangle is 12cm².
Similar questions