The side QR of APQR is produced on both sides to points A and B as shown in the figure.
Prove that ZPQA + ZPRB - 180 = LQPR.
Answers
Given, Bisectors of ∠PQRand ∠PRS meet at point T.
Given, Bisectors of ∠PQRand ∠PRS meet at point T.To prove: ∠QTR=
Given, Bisectors of ∠PQRand ∠PRS meet at point T.To prove: ∠QTR= 2
Given, Bisectors of ∠PQRand ∠PRS meet at point T.To prove: ∠QTR= 21
Given, Bisectors of ∠PQRand ∠PRS meet at point T.To prove: ∠QTR= 21
Given, Bisectors of ∠PQRand ∠PRS meet at point T.To prove: ∠QTR= 21 ∠QPR.
Given, Bisectors of ∠PQRand ∠PRS meet at point T.To prove: ∠QTR= 21 ∠QPR.Proof,
Given, Bisectors of ∠PQRand ∠PRS meet at point T.To prove: ∠QTR= 21 ∠QPR.Proof,∠TRS=∠TQR+∠QTR (Exterior angle of a triangle equals to the sum of the two interior angles.)
Given, Bisectors of ∠PQRand ∠PRS meet at point T.To prove: ∠QTR= 21 ∠QPR.Proof,∠TRS=∠TQR+∠QTR (Exterior angle of a triangle equals to the sum of the two interior angles.)⇒∠QTR=∠TRS−∠TQR --- (i)
Given, Bisectors of ∠PQRand ∠PRS meet at point T.To prove: ∠QTR= 21 ∠QPR.Proof,∠TRS=∠TQR+∠QTR (Exterior angle of a triangle equals to the sum of the two interior angles.)⇒∠QTR=∠TRS−∠TQR --- (i)Also ∠SRP=∠QPR+∠PQR
Given, Bisectors of ∠PQRand ∠PRS meet at point T.To prove: ∠QTR= 21 ∠QPR.Proof,∠TRS=∠TQR+∠QTR (Exterior angle of a triangle equals to the sum of the two interior angles.)⇒∠QTR=∠TRS−∠TQR --- (i)Also ∠SRP=∠QPR+∠PQR2∠TRS=∠QPR+2∠TQR
Given, Bisectors of ∠PQRand ∠PRS meet at point T.To prove: ∠QTR= 21 ∠QPR.Proof,∠TRS=∠TQR+∠QTR (Exterior angle of a triangle equals to the sum of the two interior angles.)⇒∠QTR=∠TRS−∠TQR --- (i)Also ∠SRP=∠QPR+∠PQR2∠TRS=∠QPR+2∠TQR∠QPR=2∠TRS−2∠TQR
Given, Bisectors of ∠PQRand ∠PRS meet at point T.To prove: ∠QTR= 21 ∠QPR.Proof,∠TRS=∠TQR+∠QTR (Exterior angle of a triangle equals to the sum of the two interior angles.)⇒∠QTR=∠TRS−∠TQR --- (i)Also ∠SRP=∠QPR+∠PQR2∠TRS=∠QPR+2∠TQR∠QPR=2∠TRS−2∠TQR ⇒ 2/1
1
1 ∠QPR=∠TRS−∠TQR (ii)