the side QR of △PQR is produced to a point S. If the bisectors of ∠PQR and ∠PRS meet at point T, then prove that ∠QTR=1/2(∠QPR)
Answers
Hello mate ☺
____________________________
Solution:
∠PQT=∠TQR (Given)
∠PRT=∠TRS (Given)
To Prove: ∠QTR=1/2(∠QPR)
∠PRS=∠QPR+∠PQR
(If a side of a triangle is produced, then the exterior angle is equal to the sum of two interior opposite angles.)
⇒∠QPR=∠PRS−∠PQR
⇒∠QPR=2∠TRS−2∠TQR
⇒∠QPR=2(∠TRS−∠TQR)
=2(∠TQR+∠QTR−∠TQR) (∠TRS=∠TQR+∠QTR)
(If a side of a triangle is produced, then the exterior angle is equal to the sum of two interior opposite angles.)
⇒∠QPR=2(∠QTR)
⇒∠QTR=1/2(∠QPR)
Hence Proved
I hope, this will help you.☺
Thank you______❤
_____________________________❤
Hello mate here is your answer
___________________________
Solution:
Solution:Given,
Solution:Given,Bisectors of ∠PQR & ∠PRS meet at point T.
To prove,
To prove,∠QTR = 1/2∠QPR.
Proof,
Proof,∠TRS = ∠TQR +∠QTR
Proof,∠TRS = ∠TQR +∠QTR(Exterior angle of a triangle equals to the sum of the two interior angles.)
⇒∠QTR=∠TRS–∠TQR — (i)
⇒∠QTR=∠TRS–∠TQR — (i)∠SRP = ∠QPR + ∠PQR
⇒∠QTR=∠TRS–∠TQR — (i)∠SRP = ∠QPR + ∠PQR⇒ 2∠TRS = ∠QPR + 2∠TQR
⇒∠QTR=∠TRS–∠TQR — (i)∠SRP = ∠QPR + ∠PQR⇒ 2∠TRS = ∠QPR + 2∠TQR[ TR is a bisector of ∠SRP & QT is a bisector of ∠PQR]
⇒∠QTR=∠TRS–∠TQR — (i)∠SRP = ∠QPR + ∠PQR⇒ 2∠TRS = ∠QPR + 2∠TQR[ TR is a bisector of ∠SRP & QT is a bisector of ∠PQR]⇒∠QPR= 2∠TRS – 2∠TQR
⇒∠QTR=∠TRS–∠TQR — (i)∠SRP = ∠QPR + ∠PQR⇒ 2∠TRS = ∠QPR + 2∠TQR[ TR is a bisector of ∠SRP & QT is a bisector of ∠PQR]⇒∠QPR= 2∠TRS – 2∠TQR⇒∠QPR= 2(∠TRS – ∠TQR)
⇒∠QTR=∠TRS–∠TQR — (i)∠SRP = ∠QPR + ∠PQR⇒ 2∠TRS = ∠QPR + 2∠TQR[ TR is a bisector of ∠SRP & QT is a bisector of ∠PQR]⇒∠QPR= 2∠TRS – 2∠TQR⇒∠QPR= 2(∠TRS – ∠TQR)⇒ 1/2∠QPR = ∠TRS – ∠TQR — (ii)
⇒∠QTR=∠TRS–∠TQR — (i)∠SRP = ∠QPR + ∠PQR⇒ 2∠TRS = ∠QPR + 2∠TQR[ TR is a bisector of ∠SRP & QT is a bisector of ∠PQR]⇒∠QPR= 2∠TRS – 2∠TQR⇒∠QPR= 2(∠TRS – ∠TQR)⇒ 1/2∠QPR = ∠TRS – ∠TQR — (ii)Equating (i) and (ii)
⇒∠QTR=∠TRS–∠TQR — (i)∠SRP = ∠QPR + ∠PQR⇒ 2∠TRS = ∠QPR + 2∠TQR[ TR is a bisector of ∠SRP & QT is a bisector of ∠PQR]⇒∠QPR= 2∠TRS – 2∠TQR⇒∠QPR= 2(∠TRS – ∠TQR)⇒ 1/2∠QPR = ∠TRS – ∠TQR — (ii)Equating (i) and (ii)∠QTR= 1/2∠QPR
⇒∠QTR=∠TRS–∠TQR — (i)∠SRP = ∠QPR + ∠PQR⇒ 2∠TRS = ∠QPR + 2∠TQR[ TR is a bisector of ∠SRP & QT is a bisector of ∠PQR]⇒∠QPR= 2∠TRS – 2∠TQR⇒∠QPR= 2(∠TRS – ∠TQR)⇒ 1/2∠QPR = ∠TRS – ∠TQR — (ii)Equating (i) and (ii)∠QTR= 1/2∠QPRHence proved.
Hope it helps, ✌️☺️