The side qr of triangle pqr is produced due to a point is the bisectors of angle pqr an angle prs meet at point p then prove that angle qtr is equal to half angle qpr
Answers
Answered by
9
Hello mate ☺
____________________________
Solution:
∠PQT=∠TQR (Given)
∠PRT=∠TRS (Given)
To Prove: ∠QTR=1/2(∠QPR)
∠PRS=∠QPR+∠PQR
(If a side of a triangle is produced, then the exterior angle is equal to the sum of two interior opposite angles.)
⇒∠QPR=∠PRS−∠PQR
⇒∠QPR=2∠TRS−2∠TQR
⇒∠QPR=2(∠TRS−∠TQR)
=2(∠TQR+∠QTR−∠TQR) (∠TRS=∠TQR+∠QTR)
(If a side of a triangle is produced, then the exterior angle is equal to the sum of two interior opposite angles.)
⇒∠QPR=2(∠QTR)
⇒∠QTR=1/2(∠QPR)
Hence Proved
I hope, this will help you.☺
Thank you______❤
_____________________________❤
Attachments:
Answered by
8
hope it's help you mate..
Attachments:
Similar questions