Math, asked by shashwat8495, 10 months ago

The sides a, b, c of △ABC are in G.P., where log a - log 2b, log 2b - log 3c, log 3c - log a are in A.P., then the △ABC is
(a) acute angled (b) obtuse angled (c) right angled (d) none of these

Answers

Answered by sourya1794
12

\huge{\boxed{\mathcal\pink{\fcolorbox{red}{blue}{..!!Hello Dear!!...}}}}\huge {\mathcal{\blue{..!!!!!!!A}\red{ns}\purple{wer}\green{!!!!!!!..}}}

━━━━━━━━━━━━━━━━━━━━━━

\huge\bold\red{{solution:-}}

{b}^{2}=ac

2{(log 2b-log 3c)}={(log a-log b)}+{(log 3clog - log a)}

log\frac{(2b)}{(3c)}^{2}= log\frac{(3c)}{(2b)}

\frac{2b}{3c}^{2}=\frac{3c}{2b}

{2b}^{3}={3c}^{3}

{b}^{2}=a\frac{(2b)}{(3)}

{b}=\frac{2a}{3}

For b = 1 sides of square are {3/2, 1 , 2/3}

Now,

CosA ={4/9+1-9/4÷ 2×2/3×1 < 0}

so, we get obtuse angled-------------------

Hence, Option (B) is the correct answer....

━━━━━━━━━━━━━━━━━━━━━━

Similar questions