Math, asked by happypayal77, 1 month ago

The sides AB, BC and CA of a ∆ABC are produced in order to form exterior angles <CEF, <ACD and <BAE. The sum of these exterior angles is:--​

Answers

Answered by pragyashreekalita61
1

Answer:

ABC+∠CBF=180

∠ACB+∠ACD=180

∠BAC+∠BAE=180

Byadding(i), (ii) and (iii)

∠ABC+∠CBF+∠ACB+∠ACD+∠BAC+∠BAE=180+180+180

∠ABC+∠ACB+∠BAC+∠CBF+∠ACD+∠BAE=540

180+∠CBF+∠ACD+∠BAE=540

[Sum of the angles of a triangle 180

]

∠CBF+∠ACD+∠BAE=360

Step-by-step explanation:

Sides BC, CA and AB of a triangle ABC are produced in order, forming exterior angles ∠ACD, ∠BAE, and∠CBF. Show that ∠ACD + ∠BAE + ∠CBF = 360°.Read more on Sarthaks.com - https://www.sarthaks.com/680232/sides-bc-and-triangle-abc-are-produced-in-order-forming-exterior-angles-acd-bae-andcbf

Answered by IIXxSavageSoulxXII
215

angle \: l \:  +  \: angle \: b \:  =  \: angle \: acd \:  =  &gt;  \: 1 \\ angle \: 3 \:  +  \: angle \: 2 \:  =  \: angle \: bae \:  =  &gt;  \: 2 \\ angle \: 3 \:  +  \: angle \: 1 \:  =  \: angle \: cbf \:  =  &gt;  \: 3 \\ from \: 1 \: 2 \:  3 \\ angle \: 1 \:  +  \: angle \: 2 \:  +  \: angle \: 3 \:  +  \: angle \: 2 \:  +  \: angle \: 3 \:  +  \: angle \: 1 \:  \\  =  \: angle \: acd \:  +  \: angle \: bae \:  +  \: angle \: cbf \\ 2(angle \: 1 \:  +  \: angle \: 2 \:  + angle \: 3) = angle \: acd \:  + angle \: bae \:  +  \: angle \: cbf \\ 2 \times 190 = angle \: acd \:  +  \: angle \: baf \:  +  \: angle \: cbf \\ 360degree \:  =  \: angle \: acd \:  +  \: angle \: bae \:  +  \: angle \: cbf.

Attachments:
Similar questions