The sides BA and DC of a quadrilateral
ABCD are produced as shown in the figure.
Prove that a + b = x + y
Answers
Answer:
In quadrilateral ABCD,
In quadrilateral ABCD, ∠A=180−b
In quadrilateral ABCD, ∠A=180−band ∠C=180−a
In quadrilateral ABCD, ∠A=180−band ∠C=180−aSum of all the angles of a quadrilateral is:
In quadrilateral ABCD, ∠A=180−band ∠C=180−aSum of all the angles of a quadrilateral is:∠A+∠B+∠C+∠D=360
In quadrilateral ABCD, ∠A=180−band ∠C=180−aSum of all the angles of a quadrilateral is:∠A+∠B+∠C+∠D=360 o
In quadrilateral ABCD, ∠A=180−band ∠C=180−aSum of all the angles of a quadrilateral is:∠A+∠B+∠C+∠D=360 o
In quadrilateral ABCD, ∠A=180−band ∠C=180−aSum of all the angles of a quadrilateral is:∠A+∠B+∠C+∠D=360 o ⇒180−b+x+180−a+y=360
In quadrilateral ABCD, ∠A=180−band ∠C=180−aSum of all the angles of a quadrilateral is:∠A+∠B+∠C+∠D=360 o ⇒180−b+x+180−a+y=360⇒360−a−b+x+y=360
In quadrilateral ABCD, ∠A=180−band ∠C=180−aSum of all the angles of a quadrilateral is:∠A+∠B+∠C+∠D=360 o ⇒180−b+x+180−a+y=360⇒360−a−b+x+y=360⇒a+b=x+y
Hence proved
HOPE IT HELPS YOU!!!