Math, asked by debalinadass88091, 1 year ago

the sides of a rectangle are in ratio 4:5 . find its sides , if the perimeter is 90 cm

Answers

Answered by bhavikachopra50
2

Let the length be 4x and the breadth be 5x

Perimeter=2(l+b)

2(4x+5x)=90

8x+10x=90

18x=90

x=90/18=5

Therefore,length=4*5=20cm

Breadth=5*5=25cm

Answered by Sauron
8

\mathfrak{\large{\underline{\underline{Answer :-}}}}

The sides of the Rectangle are 20 cm and 25 cm

\mathfrak{\large{\underline{\underline{Explanation :-}}}}

Given :

The ratio of sides of the Rectangle = 4 : 5

Perimeter of Rectangle = 90 cm

To find :

The Measures of the sides of the Rectangle

Solution :

Consider one side as 4x

Second as 5x

\boxed{\sf{2(length + breadth)}}

\bf{\implies} \: 2(4x + 5x) = 90

\sf{\implies} \: 8x + 10x = 90

\sf{\implies} \:18x = 90

\sf{\implies} \:x =  \dfrac{90}{18}

\sf{\implies} \: x = 5

\rule{300}{1.5}

Value of 4x

\sf{\implies} \: 4 \times 5

\sf{\implies} \: 20

Value of 5x

\sf{\implies} \: 5 \times 5

\sf{\implies} \: 25

\therefore The sides of the Rectangle are 20 cm and 25 cm

\rule{300}{1.5}

\mathfrak{\large{\underline{\underline{Verification :-}}}}

\sf{\implies} \: 2(20 + 25) = 90

\sf{\implies} \: 40 + 50 = 90

\sf{\implies} \: 90 = 90

\therefore The sides of the Rectangle are 20 cm and 25 cm

Similar questions