Math, asked by santosh434, 11 months ago

the sides of a rectangular Park are in the ratio 3 : 2 if the area of is 1536 m*m square find the cost of fencing @ rupees 23.50 per metre​

Answers

Answered by Brâiñlynêha
43

\huge\mathbb{SOLUTION:-}

\bf{Given:-}\begin{cases}\sf{Area\:of\:park=1536m{}^{2}}\\ \sf{Sides\:are\:in\:ratio=3:2}\\ \sf{Cost\:of\: fencing\:1m= 23.50Rs}\end{cases}

  • Now first find the Side of rectangle then Th perimeter of park

\bf\underline{\red{\:\:\:\:\:\:\:\:A T.Q:-\:\:\:\:\:\:\:\:}}

  • Let the Side of park be n

\underline{\bigstar{\sf{Area\:of\: rectangle=Length\times breadth}}}

  • Side is 3n and 2n

\sf\implies Area=l\times b\\ \\ \sf\implies 1536=2n\times 3n\\ \\ \sf\implies 1536=6n{}^{2}\\ \\ \sf\implies \cancel{\dfrac{1536}{6}}=n{}^{2}\\ \\ \sf\implies 256=n{}^{2}\\ \\ \sf\implies \sqrt{256}=n\\ \\ \sf\implies n=16

  • Now the sides of rectangle

\sf\bullet side\\ \sf\bullet Breadth=2\times 16=32m\\ \sf\bullet Length=3\times 16= 48m

\boxed{\sf{\bigstar{Perimeter\:of\: rectangle=2(length+ breadth)}}}

\sf\implies Perimeter=2(48+32)\\ \\ \sf\implies Perimeter=2\times 80\\ \\ \sf\implies Perimeter=160m

  • Now find the cost of fencing

\underline{\bigstar{\sf{Cost\:of\: fencing=Perimeter\times Rate}}}

\sf\implies Cost=160\times 23.50\\ \\ \sf\implies Cost=3760

\underline{\dag{\sf{\:\:Cost\:of\: Fencing=Rs3760}}}

Answered by Anonymous
15

AnswEr :

Rs.3760

\bf{\large{\underline{\underline{\tt{Given\::}}}}}}

The sides of a rectangular park are in the ratio 3:2. If the area of is 1536m².

\bf{\large{\underline{\underline{\tt{To\:find\::}}}}}}

The cost of fencing Rs.23.50 per metre.

\bf{\large{\underline{\underline{\rm{\red{Explanation\::}}}}}}

Let the ratio be r

\bf{We\:have}\begin{cases}\sf{Length\:of\:rectangular\:park=3r}\\ \sf{Breadth\:of\:rectangular\:park=2r}\\ \sf{Area\:=\:1536m^{2}}\\ \sf{Rate\:=\:Rs.23.50/m}\end{cases}}

\bf{\large{\underline{\underline{\tt{\green{A.T.Q\::}}}}}}}

\longrightarrow\tt{Area\:of\:rectangle\:=\:Length \times Breadth}

\longrightarrow\tt{3r\times2r\:=\:1536\:m^{2} }\\\\\\\\\longrightarrow\tt{6r^{2} \:=\:1536\:m^{2} }\\\\\\\\\longrightarrow\tt{r^{2} \:=\:\cancel{\dfrac{1536 }{6}} m^{2} }\\\\\\\\\longrightarrow\tt{r^{2} \:=\:256\:m^{2} }\\\\\\\\\longrightarrow\tt{r\:=\:\sqrt{256m^{2} } }\\\\\\\\\longrightarrow\tt{\green{r\:=\:16m}}

\bf{\large{\underline{\underline{\sf{\blacksquare{\sf{The\:sides\:of\:rectangular\:park\::}}}}}}}

  • Length = 3(16)m = 48 m
  • Breadth = 2(16)m = 32 m

Now,

\longrightarrow\tt{Perimeter\:of\:rectangular\:park\:=\:2(length+breadth)}\\\\\\\longrightarrow\tt{Perimeter\:=\:2(48m+32m)}\\\\\\\longrightarrow\tt{Perimeter\:=\:2(80m)}\\\\\\\longrightarrow\tt{\green{Perimeter\:=\:160\:m}}

\bf{\large{\boxed{\sf{\orange{The\:cost\:of\:fencing\::}}}}}}

\leadsto\rm{\blue{Perimeter\:of\:rectangular\:park\: \times\:Rate}}\\\\\\\leadsto\rm{Rs.\big(160\: \times\:23.50\big)}\\\\\\\leadsto\rm{\red{Rs.3760}}

∴ The cost of fencing is Rs.3760.

Similar questions