Math, asked by soodmamta, 9 months ago

The sides of a rectangular plot are in the ratio 5 : 4 and its area is equal to 500 m2 . The perimeter of the plot is (A) 80 m (B) 100 m (C) 90 m (D) 95 m​

Answers

Answered by Anonymous
1

Answer:

\Large\Longrightarrow\textbf{Perimeter\:=\:90\:m}

Given:

\Large\odot\:\:\textbf{Ratio\:of\:sides\:=\:5:4}

\Large\odot\:\:\textbf{Area\:of\:park\:=\:$500\:m^2$}

Explanation:

\large\textsf{Let\:the\:ratio\:of\:sides\:be\:x}

\large\textsf{Length=\:5\timesx}

\large\textsf{Breadth=\:4\timesx}

\Large\boxed{\textbf{Area\:of\:rectangle\:=\:Length\timesbreadth\:${units}^2$}}

\large\textsf{Area=$5x\times4x$}

\large\textsf{Area=$20x^2$}

\Large\textbf{ATQ,}

\large\textsf{$20x^2\:=\:500\:m^2$}

\Large\textbf{Dividing\:both\:sides\:by\:20}

\large\textsf{$x^2\:=\:25\:m^2$}

\Large\textbf{Square\:rooting\:both\:sides}

\large\textsf{x=$\sqrt{25\:m^2}$}

\large\textsf{x=5\:m}

\large\textbf{Length=$4\times5$\:m}

\large\textbf{Length=20\:m}

\large\textbf{Breadth=$5\times5$\:m}

\large\textbf{Breadth=25\:m}

\Large\boxed{\textbf{Perimeter\:=\:2(l+b)\:units}}

\large\textsf{2(25+20)\:m}

\large\textsf{2\times45\:m}

\large\textsf{90\:m\:or\:option\:C}

\Large\boxed{\textbf{Perimeter=90\:m}}

Answered by Anonymous
0

Let the length of rectangular plot = 5x

and breath of rectangular plot = 4x

area of rectangular plot = 500

 = l \times b = 500 \\ =  5x \times 4x = 500 \\  = 20 {x}^{2}  = 500 \\   {x}^{2}   =   \frac{500}{20 }  \\   {x}^{2}  = 25 \\  {x}^{2}  =  {5}^{2}  \\ x = 5

Length = 5 × 5 = 25m

Breadth = 4 × 5 = 20m

Perimeter of rectangular plot = 2(L+B)

= 2(25+20)

= 2 × 45

= 90cm

Similar questions