Math, asked by durga3493, 1 year ago

the sides of a right angle triangle containing the right angles are 5x cm and (3x-1) cm calculate the length of hypotenuse of a triangle if its area 60 centimetre square​

Answers

Answered by Anonymous
10

Answer:

Step-by-step explanation:

Given that sides of a right-angled triangle are 5x and (3x - 1)cm.  

Given that Area of the triangle = 60cm^2.  

We know that Area of the triangle = 1/2 * b * h  

                             60 = 1/2 * 5x * (3x - 1)  

                            5x(3x - 1) = 60 * 2  

                            5x(3x - 1) = 120  

                            x(3x - 1) = 120/5  

                             3x^2 - x = 24  

                             3x^2 - x - 24 = 0  

                             3x^2 + 8x - 9x - 24 = 0  

                             x(3x + 8) - 3(3x + 8)  

                             (x - 3)(3x + 8)  

                             x = 3 (or) x = -3/8.  

x value should not be -ve.Therefore the value of x = 3.  

Therefore the sides of a right-angled triangle =  

5x = 5 * 3 = 15cm  

(3x - 1) = (3 * 3 - 1)  

          = 9 - 1  

          = 8cm  

 

By Pythagoras theorem, we know that  

h^2 = 15^2 + 8^2  

      = 225 + 64  

      = 289  

h = \sqrt{289}  

  = 17.  

Therefore the hypotenuse = 17cm.  

Therefore the sides of the triangle are 8cm,15cm, and 17cm.

Answered by babu8679
2

formula=(a) square +(b) square= underoot c

so let's a= 5x and b= (3x-1)

a to q

(5x) square +(3x-1) square=√c

25x square +3x-1 square

== 34x square - 1. answer

Similar questions