The sides of a right angle triangle PQR are PQ =7cm; QR=25cm then find; tanQ-tanR
Answers
Answered by
8
Answer:
In the ∆ PQR,
- PQ = 7 cm.
- QR = 25 cm.
- PR = ?
- tan Q - tan R = ?
By using ″ Pythagoras theorem ″ , we get PR
➡ (HYPOTENUSE)² = (SIDE)² + (SIDE)²
➡ (QR)² = (PQ)² + (PR)²
➡ (25)² = (7)² + (PR)²
➡ 625 = 49 + (PR)²
➡ (PR)² = 625 - 49
➡ (PR)² = 576
➡ (PR) = √576
➡ (PR) = 24
Now, we have all sides of triangle.
- PQ = 7 cm.
- PR = 24 cm.
- QP = 25 cm.
➡ tan Q = Opposite/Adjacent
➡ tan Q = PR/QR
➡ tan Q = 24/7
➡ tan P = Opposite/Adjacent
➡ tan R = PQ/PR
➡ tan R = 7/24
➡ tan Q - tan R
➡ 24/7 - 7/24
➡ 576 - 49/168
➡ 552/168
➡ 23/6
∴ The value of tan Q - tan R = 23/6
Step-by-step explanation:
þLÈÄ§È MÄRK MÈ Ä§ ßRÄÌñLÌȧ† ✌✌✌
Attachments:
Similar questions