Math, asked by venkataiahpotjuganti, 8 months ago

The sides of a right angled triangle PQR are PQ=7cm , PR=25cm , and Q =90° respectively. Then find , tanP- tanR

Answers

Answered by Anonymous
20

Answer:

refer the attachment ,

In △ PQR using pythagoras theorem

 \implies (PR) ² = (PQ) ² +(QR) ²

625-49=(QR) ²

(QR) ² =576

QR=24CM

now ,tan P =  \frac{7}{24}

and tan R=  \frac{</strong><strong>2</strong><strong>4</strong><strong>}</strong><strong>{</strong><strong>7</strong><strong>}

 \longrightarrow tanP-tanR= 7/24 − 24/7 = 168/

 \longrightarrow  \frac{168}{576 - 49}

 \longrightarrow  \frac{168}{527}

 \longrightarrow 168/576−49

Ans: = 168/527

Attachments:
Answered by bhavani2000life
2

Answer:

Given:

PQ = 7cm

PR = 25cm

<Q = 90°

∴ By Pythagoras theorem,

= (PR)² = (RQ)² + (QP)²

= (RQ) = \sqrt{(PR)² - (QP)²}

= RQ = \sqrt{626-49}  (∵ \sqrt{25^2-7^2})

= RQ = √576 = √24² (√ and ² will get Cancelled)

⇒ RQ = 24cm

Attachments:
Similar questions