Math, asked by pavanraju, 3 months ago

The sides of a triangle ABC are of length 10 cm, 13 cm and 15 cm. P, Q and R are the mid points of its sides respectively. Then the perimeter of the triangle PQR is​

Answers

Answered by gbarman74
1

Step-by-step explanation:

Between the triangle ARP and CRQ applying mid point theorem

RP ∥ BC and

RP =

2

1

BC = CQ.

And AR = RC ( R is the mid point of AC )

again PR ∥ BC and AC is the transversal.

Therefore angle ARP = angle RCQ.

Therefore the triangles are congruent by SAS test.

Area ΔARP=AreaΔ RCQ.

By applying the same midpoint theorem we can prove that each of the four triangles have the same area.

So, they divide the triangle into four equal areas.

Now total area = 20 sq. cm.

Therefore area of the Δ PQR is 20 sq.cm divided by 4 = 5 sq.cm

Similar questions