English, asked by roshan1232596, 5 months ago

The sides of a triangle are 100m, 120m, and 140m. Find its area.​

Answers

Answered by Ladylaurel
34

Answer:

The area of the triangle is 5880cm².

Step-by-step Explanation:

First we need to find out the side,

 \dfrac{\sf{side \: a + side \: b + side \: c}}{2}

By putting the values,

\longrightarrow \dfrac{100+120+140}{2}

 \longrightarrow \dfrac{360}{2}

= 180

Now, let's find the area of triangle

Area of triangle =  \sf{\sqrt{s(s-a)(s-b)(s-c)}}

Therefore, by putting the values

\longrightarrow \sf{ \sqrt{180(180-100)(180-120)(180-140)}}

\longrightarrow \sf{ \sqrt{180(80)(60)(40)}}

\longrightarrow \sf{ \sqrt{180 \times 80 \times 60 \times 40}}

\longrightarrow \sf{\sqrt{5460000}}

\longrightarrow \sf{2400 \sqrt{6}}

 \longrightarrow \sf{ 2400 \times 2.45}

 \longrightarrow \sf{ 5880}

Therefore, area of triangle is  \sf{{5880cm}^{2}}

Answered by shivangi7511
5

Answer:

Answer:

The area of the triangle is 5880cm².

Step-by-step Explanation:

First we need to find out the side,

\dfrac{\sf{side \: a + side \: b + side \: c}}{2}

2

sidea+sideb+sidec

By putting the values,

\longrightarrow \dfrac{100+120+140}{2}⟶

2

100+120+140

\longrightarrow \dfrac{360}{2}⟶

2

360

= 180

Now, let's find the area of triangle

Area of triangle = \sf{\sqrt{s(s-a)(s-b)(s-c)}}

s(s−a)(s−b)(s−c)

Therefore, by putting the values

\longrightarrow \sf{ \sqrt{180(180-100)(180-120)(180-140)}}⟶

180(180−100)(180−120)(180−140)

\longrightarrow \sf{ \sqrt{180(80)(60)(40)}}⟶

180(80)(60)(40)

\longrightarrow \sf{ \sqrt{180 \times 80 \times 60 \times 40}}⟶

180×80×60×40

\longrightarrow \sf{\sqrt{5460000}}⟶

5460000

\longrightarrow \sf{2400 \sqrt{6}}⟶2400

6

\longrightarrow \sf{ 2400 \times 2.45}⟶2400×2.45

\longrightarrow \sf{ 5880}⟶5880

Therefore, area of triangle is \sf{{5880cm}^{2}}5880cm

2

Similar questions