Math, asked by bhavyasrivastav2008, 10 hours ago

the sides of a triangle are 35,54 and 61 CM.the length of its longest altitude is. ​

Answers

Answered by ritushit0
0

answer: Let a = 35 cm, b = 54 cm, c = 61 cm and h the longest altitude of the triangle. Semi-perimeter of the given triangle = 35 + 54 + 61 2 cm = cm = 75 cm. = 420 5 c m 2 . The longest altitude is on the smallest side in length.

Answered by Anonymous
9

Answer:

Given :

  • ➞ The sides of a triangle are 35cm ,54cm and 61cm.

\begin{gathered}\end{gathered}

To Find :

  • ➞ Length of longest altitude

\begin{gathered}\end{gathered}

Using Formulas :

{\longrightarrow{\small{\underline{\boxed{\sf{Semi \: Perimeter = \dfrac{1}{2} \bigg(a + b + c \bigg)}}}}}}

{\longrightarrow{ \small{\underline{\boxed{\sf{ Area \: of \: \triangle=\sqrt{s(s - a)(s - b)(s - c)}}}}}}}

{\longrightarrow{ \small{\underline{\boxed{\sf{ Area \: of \: \triangle = \dfrac{1}{2} \times   b  \times h}}}}}}

  • ➟ a, b, c = sides of triangle
  • ➟ s = semi perimeter
  • ➟ b = breadth
  • ➟ h = height

\begin{gathered}\end{gathered}

Solution :

Finding the area of triangle by heron's formula :

{\longrightarrow \:  \: {\sf{Semi \: Perimeter = \dfrac{1}{2} \bigg(a + b + c \bigg)}}}

{\longrightarrow \:  \: {\sf{Semi \: Perimeter = \dfrac{1}{2} \bigg(35 + 54 + 61 \bigg)}}}

{\longrightarrow \:  \: {\sf{Semi \: Perimeter = \dfrac{1}{2} \bigg(150 \bigg)}}}

{\longrightarrow \:  \: {\sf{Semi \: Perimeter = \dfrac{1}{2} \times 150 }}}

{\longrightarrow \:  \: {\sf{Semi \: Perimeter = \dfrac{150}{2}}}}

{\longrightarrow \:  \: {\sf{Semi \: Perimeter = \cancel{\dfrac{150}{2}}}}}

{\longrightarrow \:  \: {\sf{Semi \: Perimeter = 75 \: cm}}}

{\bigstar \: {\underline{\boxed{\sf{\red{Semi \: Perimeter = 75 \: cm}}}}}}

Hence, the semi perimeter of triangle is 75 cm.

 \rule{300}{1.5}

Now,

{\longrightarrow \:  \: {\sf{ Area \: of  \: \triangle=\sqrt{s(s - a)(s - b)(s - c)}}}}

{\longrightarrow \:  \: {\sf{ Area \: of  \: \triangle=\sqrt{75(75-35)(75 - 54)(75 - 61)}}}}

{\longrightarrow \:  \: {\sf{ Area \: of  \: \triangle=\sqrt{75(40)(21)(14)}}}}

{\longrightarrow \:  \: {\sf{ Area \: of  \: \triangle=\sqrt{75 \times 40\times 21 \times 14}}}}

{\longrightarrow \:  \: {\sf{ Area \: of  \: \triangle=\sqrt{882000}}}}

{\longrightarrow \:  \: {\sf{ Area \: of  \: \triangle \approx 939.14 \:  {cm}^{2}}}}

{\bigstar\:  {\underline{\boxed{\sf{\red{ Area \: of  \:  \triangle\approx 939.14 \:  {cm}^{2} }}}}}}

Hence, the area of triangle is 939.14 cm².

 \rule{300}{1.5}

Now, finding the lenght of longest altitude :

  • base = 35 cm (smallest side)
  • height = lenght of longest altitude

{\longrightarrow \:  \: {\sf{ Area \: of \: \triangle = \dfrac{1}{2} \times   b  \times h}}}

{\longrightarrow \:  \: {\sf{939.14= \dfrac{1}{2} \times 35  \times h}}}

{\longrightarrow \:  \: {\sf{939.14= \dfrac{35}{2}\times h}}}

{\longrightarrow \:  \: {\sf{939.14=  \cancel{\dfrac{35}{2}}\times h}}}

{\longrightarrow \:  \: {\sf{939.14=17.5\times h}}}

{\longrightarrow \:  \: {\sf{h = 939.14 \div 17.5}}}

{\longrightarrow \:  \: {\sf{h =  \dfrac{939.14}{17.5}}}}

{\longrightarrow \:  \: {\sf{h =   \cancel{\dfrac{939.14}{17.5}}}}}

{\longrightarrow \:  \: {\sf{h  \approx 53.67 \: cm}}}

{\bigstar \: {\underline{\boxed{\sf{\red{Lenght \:  of  \: altitude \approx 53.67\: cm}}}}}}

Hence, the lenght of longest altitude is 53.67 cm.

\begin{gathered}\end{gathered}

Learn More :

\begin{gathered}\begin{gathered}\boxed{\begin{minipage}{9cm}\\ \dag\quad \Large\underline{\bf Formulas\:of\:Triangle:-}\\ \\ \star\sf Triangle \:area = \dfrac{1}{2}\times b \times h\\ \\ \star\sf Triangle \: perimeter=a+b+c\\\\ \star\sf Scalene\:\triangle=\sqrt{s (s-a)(s-b)(s-c)}\\\\\star\sf Equilateral\: \triangle\:area = \dfrac{\sqrt{3}}{4}\times{side}^{2}\\\\\star\sf Equilateral \:\triangle\:perimeter = 3 \times side\\\\\star\sf Isosceles\: \triangle\:area= \dfrac{3}{4}\sqrt{{4b}^{2}-{a}^{2}}\\\\\star\sf Isosceles\:\triangle\:perimeter=a+2b\end{minipage}}\end{gathered}\end{gathered}

{\rule{220pt}{3pt}}

Attachments:
Similar questions