Math, asked by kameshkumar2542, 1 year ago

The sides of a triangle are 35 cm 54 cm and 61 cm. The length of its longest altitude

Answers

Answered by aanaya31
112

here it is given that the sides of triangle are 35cm 54 cm and 61 cm so by using herons formula we can find the area of the triangle

semi perimeter = a+b+c/2

                         = 35+54+61/2 = 150/2 =75

by herons formula

area of triangle = √s(s-a)(s-b)(s-c) = √75(75-35)(75-54)(75-61)

                                                       =√75×40×21×14

                                                       =√25×3×2×4×5×7×3×7×2

                                                      =5×3×2×2×7√5

                                                      =420√5cm²

also area of triangle = 1/2 ×b×h

                 420√5     =1/2×35×h

                             h    =420 ×2√5/35

                              h    = 24√5

therefore the length of the altitude is 24√5cm

Answered by watsupd2
0

Answer:

therefore the length of the altitude is 24√5cm

Step-by-step explanation:

Similar questions