Math, asked by pallavisowreddi, 10 months ago

The sides of a triangle are 35cm,54cm,and 61cm respectively. The length of its longest altitude.
a.1675cm
b.1075cm
c.2475cm
d.28cm​

Answers

Answered by Anonymous
12

GIVEN:-

  • a= 35cm

  • B= 54cm

  • C= 61cm

TO FIND:-

  • Length of it's longest altitude.

FORMULAE USED:-

  • {\boxed{\rm{\sqrt{S(S-a)(s-b)(s-c}}}}

Where,

S= Perimeter/2

\implies\rm{S=\dfrac{a+b+c}{2}}

\implies\rm{S=\dfrac{35+54+61}{2}}

\implies\rm{S=\dfrac{150}{2}}

\implies\rm{S=75cm}

Now, Applying the Formulae

\implies\tt{Area\:of\:triangle=\sqrt{S(S-a)(S-b)(S-c)}}

\implies\tt{\sqrt{(75)(75-35)(75-54)(75-61)}}

\implies\tt{\sqrt{75\times{(40)}\times{(21)}\times{(14)}}}

\implies\tt{Area\:of\:triangle=939.1cm}

Now,

  • To find the longest altitude we have to take Shortest side as a base.

\implies\sf{Area\:of\:triangle=\dfrac{1}{2}\times{Base}\times{Height}}

\implies\sf{939.1cm=\dfrac{35}{2}h}

\implies\sf{939.1\times{2}=35h}

\implies\sf{h=\dfrac{1878.2}{35}}

\implies\sf{h=53.66cm}

Hence, the length of it's longest altitude us 53.66cm.

Similar questions