Math, asked by ridhima381, 4 months ago

The sides of a triangle are 35cm, 54cm and 61cm respectively: The length of its longest altitude is ​

Answers

Answered by DogLover18
0

Answer:

ɪꜱ 64 ᴄᴍ

Step-by-step explanation:

ʜᴏᴩᴇ ɪᴛʜᴇʟᴩꜱ ᴜ !!!!!!!!

Answered by Anonymous
1

Answer:-

 \sf \: a = 35, b = 54, c = 61

 \sf \: s = \frac{(a + b + c)}{2}  \\

\sf \longrightarrow  \:  s =  \frac{(35 + 54 + 61)}{2}  \\

\sf \longrightarrow \frac{150}{2}  \\

\sf \longrightarrow75

 \sf

 \sf \: Area(Δ) =  \sqrt{s(s-a)(s-b)(s-c) }

 \sf \: ⇒ Area(Δ) =  \sqrt{75(75-35)(75-54)(75-61) }

 \sf \: ⇒ Area(Δ) =  \sqrt{75×40×21×14 }

 \sf \: ⇒ Area(Δ) = 420 \sqrt{5}   \: cm^{2}

 \sf

 \sf \: Area(Δ) =  \frac{1}{2} × Base × Altitude  \\

As the area of the triangle is fixed, for the longest altitude we need smallest base.

So, the length of base = 35cm

\sf \: Area(Δ) =  \frac{1}{2} × Base × Altitude  \\

 \sf \: ⇒ 420 \sqrt{5} =  \frac{1}{2} × 35 × Altitude  \\

 \sf \: ⇒ 24 \sqrt{5}  = Altitude.

 \sf

Hence, the correct option is (C).

Similar questions