Math, asked by mdamansaifi178, 4 months ago

The sides of a triangle are 56 cm, 60 cm and 52 cm long. Then the area of the triangle is 
1322 cm²

1311cm²

1392cm²

1344 cm²

Answers

Answered by 46omkar7
5

\boxed{\orange{Answer=>1344\:cm²}}

\underline{Explanation:}

  • According to Heron's formula the area of the triangle is,

 =  >  \blue{\sqrt{s(s - a)(s - b)(s - c)}} \\  \\ \blue{Where, \: ‘s’(semiperimeter) } =  \blue{\frac{a + b + c}{2}}  \\ \blue{and, \:( a, \: b \: and \: c) \: are \: sides \: of \: triangle.}

∴ The semiperimeter of the triangle with the sides 56 cm, 60 cm and 52 cm is,

 =  >\blue{ s} =  \blue{\frac{a + b + c}{2 }}  \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =\blue{  \frac{56 + 60 + 52}{2}}  \\  \\   = \blue{ \frac{168}{2}}  \\  \\    \:  \:  \:  \:  \:  \: =  \blue{\boxed{84 \: cm}}

∴ The area of the triangle with the sides 56 cm, 60 cm and 52 cm and semiperimeter 84 cm is,

 =  >\blue{ Area} = \blue {\sqrt{s(s - a)(s - b)(s - c)}}  \\  \\   = \blue{ \sqrt{84(84 - 56)(84 - 60)(84 - 52)}}  \\  \\  =   \blue{\sqrt{84(28)(24)(32)}}  \\  \\  = \blue{ \sqrt{84 \times 28 \times 24 \times 32}}  \\  \\  =  \blue{\sqrt{1806336}}  \\  \\  =   \green{\boxed{1344 \: cm^{2} }}

∴ The area of the triangle is 1344 cm².

Similar questions