.The sides of a triangle are 56cm, 60cm, and 52cm long. Find the
area of the triangle.
Answers
Answer:
sides of the triangle are a- 52cm, b-56cm, c- 60cm.
semi perimeter= (a+b+c)/2
=(52+56+60)/2= 84cm
by herons formula=√s(s-a)(s-b)(s-c)
=√84(84-52)(84-56)(84-60)
=√84×32×28×24
= 2×3×7×2×2×2×2×2
=1344cm sq
Answer:
Sides are 52cm, 56cm, and 60 cm
Area of the Triangle = ?
By Using Heron's Formula,
The area of the given triangle is;
$$\begin{lgathered}\\ \bullet{\boxed{\sf{ Area= \sqrt{ s(s-a)(s-b)(s-c) } }}} \\\end{lgathered}$$
Where,
$$\begin{lgathered}\because {\sf{\bf{ s = \dfrac{a+b+c}{2} }}} \\\end{lgathered}$$
$$\begin{lgathered}\implies{\sf{ \dfrac{52+56+60}{2} }} \\ \\ \implies{\sf{ \dfrac{ \cancel{168}^{ \: \: 84}}{ \cancel{2}} }} \\ \\ \implies{\sf{ 84 \: cm}} \\\end{lgathered}$$
Solution:
$$\begin{lgathered}\begin{lgathered}\\ \implies{\sf{ A= \sqrt{ 84(84-52)(84-56)(84-60) } }} \\\end{lgathered}\end{lgathered}$$
$$\begin{lgathered}\\ \implies{\sf{ \sqrt{ 84 \times 32 \times 28 \times 24} }} \\\end{lgathered}$$
$$\begin{lgathered}\\ \implies{\sf{ \sqrt{1806336} }} \\\end{lgathered}$$
$$\begin{lgathered}\begin{lgathered}\\ \implies{\sf{ 1344 \: cm^2 }} \\\end{lgathered}\end{lgathered}$$
Hence,
$$\sf\pink{\bf{ The\:area\:of\: triangle\:is\:1344\:cm^2}} .$$