Math, asked by nehan1234, 2 months ago

The sides of a triangle are 7 cm, 24 cm, 25 cm. what will be its area? Solve the following.​

Answers

Answered by Vikramjeeth
53

*Question:

The sides of a triangle are 7 cm, 24 cm, 25 cm. what will be its area? Solve the following.

*Answer:

Area of the triangle => S = (a+b+c)/2.

=> (7+24+25)/2

=> 28.

By herons formula,

= > \: \sqrt{s(s - a)(s - b)(s - c)}

= > \sqrt{28(28 - 7)(28 - 24)(28 -25)}

= > \: \sqrt{28(21)(4)(3)}

= > \: \sqrt{7 \times 4 \times 7 \times 3 \times 4 \times 3}

= > \: 7 \times 4 \times 3

= > \: 84 {cm}^{2}

@vikramjeeth

Answered by Theking0123
166

★ Required Answer:-

‏‏‎ ‎

  • Area of the triangle is 84 cm².

‏‏‎ ‎

Given:-  

‏‏‎

  • Length of side a = 7cm
  • Length of side b = 24cm
  • Length of side a = 25cm

‏‏‎ ‎

To find:-  

‏‏‎

  • Area of the triangle

‏‏‎ ‎

Solution:-

‏‏‎ ‎

\qquad  \qquad\underline{  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }

\odot Finding the semi-perimeter:-

‏‏‎

\qquad \sf{: \implies \: Semi - perimeter \:  =  \dfrac{(a \:  +  \: b \:  +  \:c) }{2}}

‏‏‎

\qquad \sf{: \implies \: Semi - perimeter \:  =  \dfrac{(7 \:  +  \: 24 \:  +  \:25) }{2}}

‏‏‎ ‎

\qquad \sf{: \implies \: Semi - perimeter \:  =  \dfrac{56 }{2}}

‏‏‎

\qquad \sf{: \implies \: Semi - perimeter \:  =  \:28 }

‏‏‎ ‎

‏‏‎ ‎

Hence the semi-perimeter of the triangle is 28cm.

\qquad  \qquad\underline{  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }

‏‏‎ ‎

‏‏‎ ‎

\odot Finding the area of the triangle:-

Using formula

  • \qquad \sf{: \implies \: Area \:_{( \: Triangle) } \:  =  \: \sqrt{s \: (s \:  -  \: a \: ) \: ( \: s \: -  \: b \: ) \: ( \: s \:  -  \: c \: ) }  }

Where,

  • S = Semi-perimeter
  • A = Length of side a = 7cm
  • B = Length of side b = 24cm
  • C = Length of side a = 25cm

‏‏‎ ‎

‏‏‎ ‎

\qquad \sf{: \implies \: Area \:_{( \: Triangle) } \:  =  \: \sqrt{s \: (s \:  -  \: a \: ) \: ( \: s \: -  \: b \: ) \: ( \: s \:  -  \: c \: ) }  }

‏‏‎ ‎

\qquad \sf{: \implies \: Area \:_{( \: Triangle) } \:  =  \: \sqrt{28 \: (28 \:  -  \: 7 \: ) \: ( \: 28 \: -  \: 24 \: ) \: ( \: 28 \:  -  \: 25\: ) }  }

‏‏‎ ‎

\qquad \sf{: \implies \: Area \:_{( \: Triangle) } \:  =  \: \sqrt{28 \: (21 \: ) \: ( \: 4\: ) \: ( \: 3\: ) }  }

‏‏‎ ‎

\qquad \sf{: \implies \: Area \:_{( \: Triangle) } \:  =  \: \sqrt{28 \:  \times  \: 21 \:  \times \: 4\:  \times  \: \: 3\:  }  }

‏‏‎ ‎

\qquad \sf{: \implies \: Area \:_{( \: Triangle) } \:  =  \: \sqrt{ \:4 \:  \times  \:  7 \:  \times  \: 3 \:  \times  \: 4 \:  \times  \: 3 \:  \times  \: 7}  }

‏‏‎ ‎

\qquad \sf{: \implies \: Area \:_{( \: Triangle) } \:  =  \: 4  \: \times \: 7  \:  \times  \: 3 }

‏‏‎ ‎

\qquad \sf{: \implies \: Area \:_{( \: Triangle) } \:  =  \:84 \: cm^{2}  }

‏‏‎ ‎

‏‏‎ ‎

Hence the area of the triangle is 84cm².

\qquad  \qquad\underline{  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }

Similar questions