The sides of a triangle are 8 cm, 15 cm and 17 cm. Find its area.
Answers
Answer:
60cm^2
Explanation:
Given :
To Find :
Formula required :
Solution :
By Heron’s formula:-
s - a
= 20 - 8
∴ 12cm
s - b
= 20 - 15
∴ 5cm
s - c
= 20 - 17
= 3cm
Area :-
Therefore, area of the given triangle is 60cm^2
Answer:
Answer:
60cm^2
Explanation:
Given :
\sf{}Sides\ of\ the\ triangle\ are\ 8 cm,15 cm\ and\ 17 cmSides of the triangle are 8cm,15cm and 17cm
To Find :
\sf{}Area\ of\ the\ triangle =?Area of the triangle=?
Formula required :
\sf{Heron's\; formula :-}Heron
′
sformula:−
\sf{}\sqrt{(s)(s-a)(s-b)(s-c)}
(s)(s−a)(s−b)(s−c)
\sf{}Here\; -:Here−:
\sf{}s\ is\ the\ semi\ perimeter\ and\ a,b,c\ are\ the\ sides\ of\ a\ triangle.s is the semi perimeter and a,b,c are the sides of a triangle.
Solution :
\begin{gathered}\sf{}Perimeter\ of\ the\ triangle =a+b+c\\\\\sf{}Semi\ perimeter\ is\ the\ of\ perimeter.\end{gathered}
Perimeter of the triangle=a+b+c
Semi perimeter is the of perimeter.
\sf{}So,So,
\sf{}Semi\ perimeter =\dfrac{a+b+c}{2}Semi perimeter=
2
a+b+c
\begin{gathered}\sf{} \implies \dfrac{8+15+17}{2}\\\\\sf{} \implies \dfrac{40}{2}\\\\\sf{} \implies 20\end{gathered}
⟹
2
8+15+17
⟹
2
40
⟹20
By Heron’s formula:-
\sf{}\sqrt{(s)(s-a)(s-b)(s-c)}
(s)(s−a)(s−b)(s−c)
s - a
= 20 - 8
∴ 12cm
s - b
= 20 - 15
∴ 5cm
s - c
= 20 - 17
= 3cm
Area :-
\sf{}\implies \sqrt{20\times12\times5\times3}⟹
20×12×5×3
\sf{}\implies \sqrt{2\times2\times5\times2\times2\times3\times5\times3}⟹
2×2×5×2×2×3×5×3
\sf{}\implies 2\times 5\times2\times2\times3⟹2×5×2×2×3
\sf \implies{}60cm^2⟹60cm
2
Therefore, area of the given triangle is 60cm^2