Math, asked by iqbalgahla9205, 1 year ago

The sides of a triangle are 8cm,15cm,17cm. Find its area

Answers

Answered by pramilapal333
8

Answer: 60cm²

Step-by-step explanation:

s=(8+15+17)/2=20.

area of triangle =square root of (s(s-8)(s-15)(s-17))

=square root of(20(20-8)(20-15)(20-17)

=square root of(20*12*5*3)

= square root of(4*5*4*3*5*3)

=4*5*3=60cm^2.

Answered by Intelligentcat
36

\Large{\boxed{\underline{\overline{\mathfrak{\star \: QuEsTiOn :- \: \star}}}}}

The sides of a triangle are 8cm,15cm,17cm. Find its area .

\huge\underline{\overline{\mid{\bold{\pink{ANSWER-}}\mid}}}

\red{\bigstar} Area \large\leadsto\boxed{\rm\purple{ {60cm}^{2}}}

\Large{\underline{\underline{\bf{GiVen:-}}}}

Sides of the triangle respectively :-

A 8cm

B = 15cm

C = 17cm

\Large{\underline{\underline{\bf{Find:-}}}}

Area = ?

\Large{\underline{\underline{\bf{SoLuTion:-}}}}

Area of triangle

 \sf a =  {60cm}^{2}

As per the given :+

A = 8cm

B = 15cm

C = 17cm

 \sf \: s =  \frac{a + b + c}{2}

Now , substitute A , B and C values, we get

 \sf \: s =  \frac{8 + 15 + 17}{2}

 \sf \implies \: s =  \frac{40}{2}

 \sf \implies \: s = 20

s - a = 20 - 8 = 12

s - b = 20 - 15 = 5

s - c = 20 - 17 = 3

Area of triangle

 \sf \: A =  \sqrt{s(s - a)(s - b)(s - c)}

 \implies \sf \: A =  \sqrt{20 \times 12 \times 5 \times 3}

  \implies \sf \: A =  \sqrt{3600}

 \implies \sf \: \: A=  {60}^{2}

 \sf \implies \: A =  {60cm}^{2}

\mathfrak{\huge{\pink{\underline{\underline{Hence}}}}}

Area of triangle

 \sf A  =  {60cm}^{2}

\boxed{\sf\blue{Area  \: of \: triangle  [A] = \dfrac{{60cm}^{2}}}}

Similar questions