The sides of a triangle are in A.P and the greatest angle exceeds the least by 90° these sides are in the ratio
Answers
Answered by
7
If a,b,ca,b,c where a>b>c⟹a+c=2ba>b>c⟹a+c=2b
asin(90∘+x)=bsin(90∘−2x)=csinx=2Rasin(90∘+x)=bsin(90∘−2x)=csinx=2R
⟹a=2Rcosx,b=2Rcos2x,c=2Rsinx⟹a=2Rcosx,b=2Rcos2x,c=2Rsinx
Using a+c=2b,cosx+sinx=2cos2x=2(cosx−sinx)(cosx+sinx)a+c=2b,cosx+sinx=2cos2x=2(cosx−sinx)(cosx+sinx)
As 90∘−2x>0,cos2x>090∘−2x>0,cos2x>0
and also cosx,sinx>0⟹cosx+sinx>0cosx,sinx>0⟹cosx+sinx>0
cancelling cosx+sinx,cosx+sinx, we get cosx−sinx=12cosx−sinx=12
Squaring we get, 1−sin2x=14⟺sin2x=?1−sin2x=14⟺sin2x=?
⟹cos2x=+1−sin22x−−−−−−−−−√=7–√4⟹cos2x=+1−sin22x=74
cos2x=1+cos2x2=4+7–√8=(7–√+14)2cos2x=1+cos2x2=4+78=(7+14)2
Find sin2xsin2x and use cosx,sinx>0cosx,sinx>0
Can you find the required ratio from here?
asin(90∘+x)=bsin(90∘−2x)=csinx=2Rasin(90∘+x)=bsin(90∘−2x)=csinx=2R
⟹a=2Rcosx,b=2Rcos2x,c=2Rsinx⟹a=2Rcosx,b=2Rcos2x,c=2Rsinx
Using a+c=2b,cosx+sinx=2cos2x=2(cosx−sinx)(cosx+sinx)a+c=2b,cosx+sinx=2cos2x=2(cosx−sinx)(cosx+sinx)
As 90∘−2x>0,cos2x>090∘−2x>0,cos2x>0
and also cosx,sinx>0⟹cosx+sinx>0cosx,sinx>0⟹cosx+sinx>0
cancelling cosx+sinx,cosx+sinx, we get cosx−sinx=12cosx−sinx=12
Squaring we get, 1−sin2x=14⟺sin2x=?1−sin2x=14⟺sin2x=?
⟹cos2x=+1−sin22x−−−−−−−−−√=7–√4⟹cos2x=+1−sin22x=74
cos2x=1+cos2x2=4+7–√8=(7–√+14)2cos2x=1+cos2x2=4+78=(7+14)2
Find sin2xsin2x and use cosx,sinx>0cosx,sinx>0
Can you find the required ratio from here?
Nehas31:
No I'm unable to get
Similar questions