Math, asked by malikabwajid, 2 months ago

the sides of a triangle are in ratio 3 is to 5 is to 7 if the perimeter is 75 find area

Answers

Answered by sskzm6252
1

Answer:

sides are 15, 25, 35 cm you can find the area using herons formula it is

Step-by-step explanation:

square root of s(s-a)(s-b)(s-c)

where s = 1/2 of the perimeter of the triangle

Answered by Anonymous
72

Answer:

Given :-

  • The sides of a triangle are in the ratio of 3 : 5 : 7.
  • The perimeter of a triangle is 75.

To Find :-

  • What is the area of a triangle.

Solution :-

Let,

\mapsto \bf{First\: Side =\: 3x\: cm}

\mapsto \bf{Second\: Side =\: 5x\: cm}

\mapsto \bf{Third\: Side =\: 7x\: cm}

According to the question,

\implies \sf 3x + 5x + 7x =\: 75

\implies \sf 8x + 7x =\: 75

\implies \sf 15x =\: 75

\implies \sf x =\: \dfrac{\cancel{75}}{\cancel{15}}

\implies \sf\bold{\purple{x =\: 5\: cm}}

Hence, the required sides are :

First Side :

\leadsto \sf First\: Side =\: 3x\: cm

\leadsto \sf First\: Side =\: 3 \times 5\: cm

\implies \sf\bold{\green{First\: Side =\: 15\: cm}}

Second Side :

\leadsto \sf Second\: Side =\: 5x\: cm

\leadsto \sf Second\: Side =\: 5 \times 5\: cm

\leadsto \sf\bold{\green{Second\: Side =\: 25\: cm}}

Third Side :

\leadsto \sf Third\: Side =\: 7x\: cm

\leadsto \sf Third\: Side =\: 7 \times 5

\leadsto \sf\bold{\green{Third\: Side =\: 35\: cm}}

Now, we have to find the semi-perimeter of a triangle :

\clubsuit Semi-Perimeter Of A Triangle Formula :

\footnotesize\mapsto \sf\boxed{\bold{\pink{Semi-Perimeter_{(Triangle)} =\: \dfrac{a + b + c}{2}}}}

Given :

  • First Side (a) = 15 cm
  • Second Side (b) = 25 cm
  • Third Side (c) = 35 cm

According to the question by using the formula we get,

\implies \sf Semi-Perimeter_{(Triangle)} =\: \dfrac{15 + 25 + 35}{2}

\implies \sf Semi-Perimeter_{(Triangle)} =\: \dfrac{75}{2}

\implies \sf\bold{\purple{Semi-Perimeter_{(Triangle)} =\: 37.5\: cm}}

Now, we have to find the area of a triangle by using Heron's Formula :

\clubsuit Area Formula by using Heron's Formula :

\footnotesize\mapsto \sf\boxed{\bold{\pink{Area_{(Triangle)} =\: \sqrt{s(s - a)(s - b)(s - c)}}}}

where,

  • s = Semi-Perimeter of a triangle

According to the question by using the formula we get,

\small\longrightarrow \sf Area_{(Triangle)} =\: \sqrt{37.5(37.5 - 15)(37.5 - 25)(37.5 - 35)}

\small\longrightarrow \sf Area_{(Triangle)} =\: \sqrt{37.5(22.5)(12.5)(2.5)}

\small\longrightarrow \sf Area_{(Triangle)} =\: \sqrt{37.5 \times 703.125}

\small\longrightarrow \sf Area_{(Triangle)} =\: \sqrt{26367.1875}

\small\longrightarrow \sf\bold{\red{Area_{(Triangle)} =\: 162.37(approx)\: cm}}

{\small{\bold{\underline{\therefore\: The\: area\: of\: triangle\: is\: 162.37\: cm\: .}}}}

Similar questions