The sides of a triangle are in the racer 25 ratio 17 ratio 12 and its parameter is 540 metre find the area of the triangl
Answers
Let a, b and c be the sides of the triangle
a:b:c = 25:17:12
Let k be the common multiple on the RHS
a:b:c = 25k:17k:12k
So, a = 25k, b = 17k, c = 12k
Perimeter(∆) = 540
a + b + c = 540
25k + 17k + 12k = 540
54k = 540
k = 10
a = 25k = 25 x 10 = 250 units
b = 17k = 17 x 10 = 170 units
c = 12k = 12 x 10 = 120 units
For the triangle, semiperimeter(∆)
s = perimeter(∆)/2 = 540/2
s = 270 = 3² x 30
s - a = 270 - 250 = 20 = 4 x 5 = 2² x 5
s - b = 270 - 170 = 100 = 10²
s - c = 270 - 120 = 150 = 25x6 = 5² x 6
By heron's formula
ar(∆) = √[s(s-a)(s-b)(s-c)]
ar(∆) = √[(3² x 30)(2² x 5)(10²)(5² x 6)]
ar(∆) = 3 x 2 x 10 x 5√(30 x 6 x 5)
ar(∆) = 300 √(30 x 30) = 300 √ (30²)
ar(∆) = 300 x 30
ar(∆) = 9000 sq. units
Hence, area of the triangle is 9000 unit²