Math, asked by ad5105046, 6 months ago

The sides of a triangle are in
the ratio 12:17:25 and its
perimeter is 540 cm. the area
is
(a) 1000 cm2
(b) 5000 cm2
(c) 9000 cm2
(d) 8000 cm2​

Answers

Answered by shaktisrivastava1234
5

 \huge  \fbox{\green{Answer:-}}

 \large  \bf{\red{Given:-}}

 \sf \rightarrow{Sides \: of \: triangle(in\:ratio) \: is \: 12:17:25.}

 \sf \rightarrow{Perimeter \: of \: triangle \: is \: 540cm.}

 \large  \bf{\red{To \: find:}}

 \sf \leadsto{Area \: of \: triangle.}

 \large \bf{ \red{Formula \: used:}}

  \boxed{\bf{Perimeter \: of \: triangle=sum \: of \: all \: sides}}

 \boxed {\bf{Area \: of \: triangle=  \sqrt{s(s - a)(s - b)(s - c)} }}

 \sf{Where,s=semi-perimeter \: of   \: triangle}

 \sf{a,b \: and \: c \: is \: the \: sides \: of \: the \: triangle.}

 \bf \red{According \: to \: Question:}

{\sf{⇒Perimeter \: of \: triangle=sum \: of \: all \: sides}}

 \implies \sf{540cm = 12x + 17x+ 25x}

 \implies \sf{540cm = 54x} \\  \implies \sf{ \frac{540cm}{54} = x}

 \sf \implies{x = 10}

 \sf \implies{s =  \frac{540}{2}  = 270cm}

 \sf{a = 12x = 12 \times 10 = 120}

 \sf{b = 17x = 17 \times 10 = 170}

 \sf{c = 25x = 25 \times 10 = 250}

 \sf \implies{Area \: of \: triangle =  \sqrt{s(s - a)(s - b)(s - c))} }

 \sf \implies{Area \: of \: triangle =  \sqrt{270(270- 120)(270 - 170)(270 - 250)} }

 \sf \implies{Area \: of \: triangle =  \sqrt{270 \times 150 \times 100 \times 20} }

  \sf \implies{Area \: of \: triangle =  \sqrt{8,10,00,000}}

{ \sf \implies{Area \: of \: triangle = 9,000cm²}}

 \fbox{\sf {{Area \: of \: triangle = 9,000cm²}}}

__________________________________________________

Similar questions