Math, asked by aks5048, 11 months ago

The sides of a triangle are in the ratio 13:14:15 and its perimeter is 84 cm. Find the area of the triangle.

Answers

Answered by Brâiñlynêha
23

\huge\mathbb{SOLUTION:-}

\begin{cases}\sf{Sides\:of\: triangle\:in\: ratio}\\ \sf{13:14:15\:\:\:its\: perimeter=84cm}\end{cases}

  • We have to find the area of triangle

  • Now let the side of triangle be x

\boxed{\sf{Perimeter\:of\: triangle=sum\:of\:all\:sides}}

\bf\underline{\underline{\red{According\:To\: Question:-}}}

  • The side of triangle be 13 x, 14x and 15x

\sf\longrightarrow 84=13x+14x+15x\\ \\ \sf\longrightarrow 84=42x\\ \\ \sf\longrightarrow \cancel{\frac{84}{42}}=x\\ \\ \sf\implies x=2

  • The value of x is 2

  • Now the sides be
  • 13×2=26cm
  • 14×2=28cm
  • 15×2=30cm

\sf\underline{Sides\:of\: triangle=26cm,\:28cm\:and\: 30cm}

  • Now we have to find the area of triangle

  • The sides of triangle are different so here use heron's formula to find the area of triangle

\underline{\boxed{\sf{\purple{Area\:of\: triangle=\sqrt{s(s-a)(s-b)(s-c)}}}}}

  • Where s is the semi perimeter

\tt\implies s=\frac{a+b+c}{2}

\bold{we\:have}\begin{cases}\sf{Sides\:of\: triangle}\\ \sf{26cm\:28cm\:and\:30cm}\end{cases}

  • Let's find the value of semi perimeter

\sf\implies s=\frac{26+28+30}{2}\\ \\ \sf\implies s=\cancel{\frac{84}{2}}=42\\ \\ \tt\implies{\blue{semi\: perimeter=42cm}}

\sf\hookrightarrow Area\:of\:triangle=\sqrt{42(42-26)(42-28)(42-30)}\\ \\ \sf\hookrightarrow Area\:of\:\triangle=\sqrt{42\times 16\times 14\times 12}\\ \\\sf\hookrightarrow Area\:of\:\triangle=\sqrt{7\times 6\times 4\times 4\times 7\times 2\times 6\times 2}\\ \\ \sf\hookrightarrow Area\:of\:\triangle=7\times 4\times 6\times 2\\ \\ \sf\hookrightarrow Area\:of\:\triangle=28cm\times 12cm\\ \\ \sf\implies Area\:of\: triangle=336cm{}^{2}

\boxed{\sf{\purple{Area\:of\: triangle=336cm{}^{2}}}}

#BAL

#answerwithquality

Similar questions